Los Sólidos Platónicos: Historia de los Poliedros Regulares
DivulgaMAT
Inicio - DivulgaMAT Facebook - DivulgaMAT Twitter - DivulgaMAT

Los Sólidos Platónicos: Historia de los Poliedros Regulares
PDF Imprimir Correo electrónico
Escrito por Pedro Miguel González Urbaneja   
Índice del artículo
Los Sólidos Platónicos: Historia de los Poliedros Regulares
Página 2
Página 3
Página 4
Página 5
Página 6
Página 7
Página 8
Página 9
Página 10
Página 11
Todas las páginas

«Pitágoras investigó los teoremas de un modo inmaterial e intelectual y descubrió la dificultad de los números irracionales y la construcción de las figuras cósmicas [poliedros]».
PROCLO DE LICIA. Comentarios al Libro I de los Elementos de Euclides.

«Hace falta explicar qué propiedades deberían tener los cuerpos más bellos, [...], deben tener la propiedad de dividir en partes iguales y semejantes la superficie de la esfera en que están inscritos».
PLATÓN. Timeo 54b-55a.

«La culminación de Los Elementos de Euclides con la construcción de los poliedros responde al interés especial que mostraban los filósofos griegos por todo lo que atañe a los cuerpos regulares».
F.KLEIN. Matemática elemental desde un punto de vista superior. Vol. II. Geometría. Biblioteca Matemática. Dtor: J.Rey Pastor. Madrid, 1931. p.260.

Estudios de Leonardo da Vinci
Estudios de Leonardo da Vinci (1513) sobre la Geometría de los poliedros con especial énfasis en el Cubo y el Icosaedro. Códice Atlántico (f. 518r).


ÍNDICE

1. Introducción
2. Los poliedros en el Neolítico
3. La Cosmogonía poliédrica pitagórica
4. Los Poliedros en El Timeo de Platón
5. El Libro XIII de Los Elementos de Euclides
6. Los Poliedros en el Renacimiento. Della Francesca, Luca Pacioli y  Durero
7. La Cosmología poliédrica de Kepler
8. Los poliedros en los tiempos modernos
9. Los Poliedros en el Arte del siglo XX: Gaudí, Escher y Dalí
10. Epílogo
11. Bibliografía

 

1. Introducción

La exuberante geometría de los sólidos platónicos, por sus significativos atributos de naturaleza geométrica, estética, simbólica, mística y cósmica, ha fascinado en todas las civilizaciones, desde los pueblos neolíticos hasta nuestros días. Los poliedros son el núcleo de la cosmogonía pitagórica del Timeo de Platón que los asocia con la composición de los elementos naturales básicos, teoría de orden místico-filosófico que tendrá una decisiva influencia en la cosmología poliédrica de Kepler. Euclides recoge la herencia pitagórica y platónica y sitúa a los cinco sólidos regulares en el clímax final de Los Elementos, como glorificación y cenit de un tratado geométrico tan brillante, en lo que se considera el primer teorema de clasificación de la Matemática.

Los poliedros han sido en todas las épocas símbolo y expresión placentera de la belleza ideal, de ahí su presencia en la composición de muchas obras y tratados de artistas y teóricos renacentistas (Piero della Francesca, Pacioli, Leonardo, Durero,...), que diseñan y escriben entre el Arte y la Geometría, tomando como argumento el encanto y la seductora perfección de los sólidos platónicos.

En los tiempos modernos los poliedros han sido un importante nexo que vincula cuestiones de Matemática superior (Topología algebraica, Teoría de Grupos, …) con la resolución de ecuaciones algebraicas y la Cristalografía, pero también, por su belleza y misterio, una fuente inagotable de inspiración que enciende la fantasía de creadores, diseñadores y artistas, entre los que sobresale la espectacularidad de los impresionantes trabajos de aplicación de los poliedros en Gaudí, Escher y Dalí, que como sus antepasados, geómetras y artistas, imputan a su geometría funciones de orden estético, cosmológico, científico, místico y teológico.

Sólidos platónicos



Nota: La mayor parte del contenido de este texto es la traducción al castellano del siguiente artículo que he publicado en catalán:
GONZALEZ URBANEJA, P.M.: Els sòlids pitagòricoplatònics. Geometria, Art, Mística i Filosofia. BIAIX. 21, pp. 10-24, 12/03. Federació d’entitats per a l’Ensenyament de les Matemàtiques a Catalunya.


 

© Real Sociedad Matemática Española. Aviso legal. Desarrollo web