DivulgaMAT
Inicio - DivulgaMAT Facebook - DivulgaMAT Twitter - DivulgaMAT


Home » Historia de las matemáticas » Biografías de matemáticos ilustres

Biografías de matemáticos ilustres

Resultados 1 - 10 de 71

Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:José María Almira (Universidad de Jaén)
1. VIDA Norbert Wiener nació en Columbia, Missouri (Estados Unidos) el 26 de noviembre de 1894. Era de origen judío, aunque no supo de esto hasta su adolescencia. Su padre, Leo Wiener (1862-1939), era una persona de carácter. Había llegado a Estados Unidos cuando tenía solamente 18 años, sin una formación académica formal, y, gracias a su tremenda facilidad para las lenguas, consiguió con el tiempo un puesto como profesor de lenguas eslavas en la universidad de Harvard, donde ocuparía una cátedra a partir de 1911 y se jubilaría como profesor emérito en 1930. Parece ser que la madre de Wiener, de nombre Bertha, no ejerció demasiada influencia sobre éste. En su autobiografía, Wiener solamente menciona que era "una mujer pequeña, vigorosa y vivaz" , mientras que al padre le dedica largas páginas en las que se mezclan la admiración y el resentimiento. Parece ser que su padre le amargó la infancia, al hacerse cargo personalmente de su educación y someterlo a una disciplina férrea, que acabaría marcando en él un carácter inseguro y suspicaz. Wiener tuvo el honor de la fama (o la desgracia, según se mire) en al menos dos momen­tos importantes de su vida. El primero fue cuando comenzó sus estudios universitarios en el Tufts Collegue, con sólo 11 años de edad. Así, Wiener era calificado de "niño prodigio" y sometido a la presión de la prensa. Asistía a las clases cuando aún llevaba, en sus propias palabras, pantalones cortos. Se licenció sin problemas y, tras algunos fracasos personales en su intento de comenzar una carrera en zoología, fue enviado a realizar el doctorado a Harvard. Allí defendió una tesis sobre una cuestión técnica de lógica matemática, rela­cionada con los trabajos recientes de Russell y Whitehead, obteniendo el título de doctor con sólo 18 años. La otra ocasión de fama vendría mucho tiempo después, cuando publicó sus primeros trabajos sobre cibernética y, además, se enfrentó al status qua al denunciar el uso inmoral que se estaba realizando de la ciencia, sometiendo la a intereses puramente militares. Tras defender su tesis, Wiener obtuvo una beca para visitar a Russell en Inglaterra. Sin embargo, no se estableció una relación fluida entre ellos, lo cual llevó a Wiener a abandonar sus intereses en lógica matemática y, con la ayuda del también genio de las matemáticas Hardy, se introdujo en el análisis matemático. Concretamente, Hardy explicó a Wiener los entresijos del mundo de la variable compleja y la teoría de la medida. Estos fueron dos de los ingredientes fundamentales con los que Wiener condimentaría una larga trayectoria investigadora, en la que con el tiempo logró importantes éxitos. Un tercer y cuarto ingredientes fueron el análisis de Fourier y una visión profunda de los problemas de la física, la ingeniería electrónica y la biología. Wiener no empleó todo el tiempo de su beca en permanecer en Inglaterra sino que aprovechó su cercanía al viejo continente para visitar Alemania. En particular, viajó a Gotinga, donde asistiría a los cursos de Hilbert y Landau. Además, durante su estancia estudió algo de física, mostrando un especial interés por los trabajos de Einstein de 1905 (su "año milagroso", en el que investigaría entre otros temas el efecto fotoeléctrico, el movimiento Browniano y la teoría especial de la relatividad). En 1914 estalló la Gran Guerra y Wiener volvió rápidamente a Estados Unidos, donde pasaría el verano en New Hampshire. Luego volvió a Inglaterra, pero allí no estaban las cosas como para dedicarse a la investigación y, además, no encontraba a nadie con quien poder colaborar, así que regresó a la casa familiar, a Boston. Pasaron cuatro largos años, en los que Wiener iría cambiando de un empleo a otro, hasta que, en 1919, consiguió un puesto de profesor en el Instituto Tecnológico de Massachusets (MIT). Allí permanecería el resto de su vida académica. Se puede decir que Wiener disfrutó, a partir de entonces, de la vida típica de un profesor universitario estadounidense, dedicado sobre todo a sus investigaciones. En otras palabras, al tener resuelta su economía (y más, tras conseguir una cátedra, en 1931) su vida se centró completamente en la investigación y el cuidado de sus relaciones con el resto de eruditos con los que trabajó, o a los que admiró, tanto en Estados Unidos como en Europa y otros países, como México o China. A Wiener le encantaba viajar y, probablemente herencia de su padre, disfrutaba mucho con los idiomas. Sobre él se ha dicho que "hablaba varios idiomas ... pero no se le entendía bien en ninguno de ellos" . Entre 1920 y 1923, Wiener obtuvo su primer gran éxito, que fue la consecución de un modelo matemático para el movimiento Browniano. Además, en 1920, durante una visita a Fréchet, justo antes del congreso internacional de matemáticos que tendría lugar en Estrasburgo ese mismo año, propuso un conjunto de axiomas para la caracterización de ciertos espacios, que luego se comprobaría que coincidían plenamente con los espacios que Banach estaba estudiando simultáneamente en Polonia. Wiener se dedicó muy pronto a otros temas, al verse desbordado por la cantidad de publicaciones que aparecían constan­temente en relación a los espacios de Banach- Wiener. No soportaba la competencia. Le desquiciaba pensar que cualquier día podría encontrarse con que alguien había publicado ya algo en lo que él estaba trabajando en ese momento. Ya de vuelta en EEUU, se ocupó durante un tiempo en la solución de un problema muy importante en teoría del potencial: el problema de Zaremba. Esta cuestión también le causó algunas dificultades, pues su bril­lante resolución del problema dejaba en evidencia el trabajo que aún estaban realizando algunos matemáticos en Harvard, y Kellogg le pidió que retrasara su publicación. Esto sentó muy mal a Wiener y, por supuesto no lo hizo. De esta forma Wiener consiguió un poco de respeto por parte de sus colegas norteamericanos -que no habían sabido apreciar sus otros trabajos-, pero a cambio tuvo un fuerte enfrentamiento personal con Kellog, que era ya un prestigioso e influyente matemático de Harvard. Wiener trabajó muy duro en varias cuestiones matemáticas relacionadas con la in­geniería eléctrica. Su primera contribución en este campo fue proporcionar una base matemática sólida para el cálculo operacional de Heaviside, pero tras esto vinieron muchas otras aportaciones importantes. Entre ellas, le debemos una buena parte del lenguaje y las técnicas de la teoría de filtros de ondas, tanto en el caso determinista como en el caso aleatorio. Además, su ampliación del análisis armónico y, en particular, la introducción de técnicas propias del cálculo de probabilidades en este área, han tenido una enorme repercusión en el desarrollo de la matemática aplicada en general y de la teoría de la comunicación en particular. Trabajó en colaboración tanto con matemáticos de primera fila, como Paley o Hopf, como con físicos (Born), ingenieros (Lee, Bigelow), fisiólogos (Rosenblueth), etc. Consiguió, con su publicación de "Cibernética" en 1948, dar el salto a la fama, más allá de los círculos profesionales relacionados con las matemáticas o la ingeniería. Como ya hemos mencionado, le gustaba viajar. Tras su reclutamiento en el MIT pasó muchos veranos visitando a matemáticos en Europa y, posteriormente, también viajaría a China, India y, en numerosas ocasiones, a México. Apostó fuertemente por el carácter internacional y puramente apolítico de las matemá­ticas, asistiendo siempre que pudo a los congresos internacionales de matemáticos. Par­ticipó, desde su posición de catedrático en el MIT, en el reclutamiento de numerosos matemáticos judíos que tuvieron que exiliarse tras el ascenso de Hitler al poder. Entre otros, es seguro que ayudó a encontrar una posición en EEUU a O. Szász, H. Rademacher, G. Polya, G. Szégö y K. Menger. Durante la segunda guerra mundial se ocupó de estudiar el problema de la predicción de la posición de un blanco móvil mediante el uso de filtros causales y técnicas estadísticas. En ese periodo redactó un informe técnico (secreto, muy a su pesar) que resolvía este problema de manera muy eficaz. Su informe vería la luz en 1949, en forma de monografía, un poco despues de que Kolmogorov publicara -con otras técnicas y en la URSS, en idioma ruso- resultados muy similares. Durante la locura del Macartismo, Wiener defendió abiertamente a algunos colegas del MIT que estaban siendo investigados. En particular, presionó al rector (amenazando con su inmediata salida del MIT) para que dicha institución no tomase represalias contra Struik por su supuesta vin­culación con el partido comunista. A Struik le impidieron dar clases pero mantuvieron su sueldo mientras estaba siendo investigado. Wiener murió el 18 de marzo de 1964 en Estocolmo, de un ataque al corazón. Terminamos esta sección incluyendo una lista de los doctorandos de Wiener (que deja clara la enorme influencia que ha tenido su obra en el siglo XX), y una breve cronografía, con datos variados sobre su vida y obra. Lista de doctorandos de Wiener. Gleason Kenrick. "A New Method of Periodogram Analysis with Il1ustrative Ap­plications" (tesis codirigida con Frank Hitchcock), 1927, MIT. Carl Muckenhoupt. "Almost Periodic Functions and Vibrating Systems" (tesis codirigida con Philip Franklin), 1929, MIT. Dorothy Weeks. "A Study of the Interference of Polarized Light by the Method of Coherency Matrices", 1930, MIT. Yuk Wing Lee. "Synthesis of Electric Networks by Means of the Fourier Trans­forms of Laguerre's Functions", 1930, MIT. (Lee tiene 258 descendientes científicos). Shikao Ikehara. "An Extension of Landau's Theorem in the Analytic Theory of Numbers", 1930, MIT. Sebastian Littauer. "Applications of the Fourier Transform Theorem on the Ex­ponential Scale", 1930, MIT. James Estes. "The Lift and Moment of an Arbitrary Aerofoil-Joukovsky Poten­tial", 1933, MIT. Norman Levinson. "On the Non-Vanishing of a Function", 1935, MIT. (Levinson tiene 377 descendientes científicos). Henry Malin. "On Gap Theorems", 1935, MIT. Bernard Friedman. "Analyticity of Equilibrium Figures of Rotation" ,1936, MIT. (Friedman tiene 100 descendientes científicos). Brockway McMillan. "The Calculus of the Discrete Homogeneous Chaos", 1939, MIT. Abe Gelbart. "On the Growth Properties of a Function of Two Complex Variables Given by its Power Series Expansion", 1940, MIT. (Gelbart tiene 66 descendientes científicos). Colin Cherry. "On Human Communication: A Review, a Survey, and a Criticism", 1956, Imperial College. (Cherry tiene 102 descendientes científicos). Amar Bose. "A Theory of Nonlinear Systems" (tesis codirigida con Yuk Wing Lee), 1956, MIT. (Bose tiene 69 descendientes científicos). Donald Brennan. "On the Pathological Character of Independent Random Vari­ables", 1959, MIT. William Stahlman. "The Astronomical Tables of Codex Vaticanusgraecus 1291", (tesis codirigida con Otto Neugebauer), 1960, Brown University. Donald Thfts., "Design Problems in Pulse Transmission", (tesis codirigida con Yuk Wing Lee), 1960, MIT. (Tufts tiene 126 descendientes científicos). George Zames. "Nonlinear Operators for System Analysis", (tesis codirigida con Yuk Wing Lee), 1960, MIT. (Zames tiene 11 descendientes científicos). Cronología. 1894 Nace Norbert Wiener en Columbia, Missouri (EEUU), hijo de Leo Wiener y Bertha Kahn. 1901 Primer viaje a Europa. 1903 Primer ingreso de Wiener en la escuela. Antes de esto, su educación había corrido a cargo del padre. 1906-1909 Tufts Collegue. Se gradúa en filosofía, con mención especial en matemáticas, a los 14 años. 1913 Doctor en filosofía por la Universidad de Harvard. Becado para visitar a Russell. Conoce a Hardy. Viaja a Gotinga, donde conoce a Hilbert, Landau, etc. 1914 Inicio de la Primera Guerra Mundial. Wiener regresa a EEUU. 1917 EEUU entra en la Primera Guerra Mundial. Wiener intenta alistarse en el ejército pero no es admitido por su extrema miopía. 1919 Consigue trabajo como profesor en el departamento de matemáticas del MIT. 1920 Caracterización de la estructura de cuerpo en base a una única operación binaria. Congreso de Estrasburgo. Definición de los espacios de Wiener-Banach. Visita a Frechet. 1920-1923 Fundación matemática del movimiento Browniano. 1924 Solución del problema de Zaremba. Conflicto con O.D. Kellogg. 1925 Conferencia en Gotinga sobre el principio de incertidumbre de la teoría de señales. Es invitado para realizar una estancia el siguiente curso académico. Recibe a BUrIl en el MIT, con quien redacta un importante artículo sobre mecánica cuántica. 1926 Cálculo operacional de Heaviside. Concepto de operador causal. Concepto de distribución. Solución generalizada de la ecuación del telégrafo. Se casa con Marguerite Engelmann. 1927 Nace Bárbara, la primera hija de Wiener. 1928 Primeros trabajos sobre teoremas Tauberianos. 1929 Profesor titular en el MIT. Nace Peggy, la segunda (y última) hija de Wiencr. 1930 Publica "Análisis Armónico Generalizado" en Acta Math. Tesis de Yuk Wing Lee. 1930-1931 Conoce a E. Hopf, a quien ayuda a entrar en el departamento de matemáticas del MIT. Publican juntos un importante artículo sobre ecuaciones integrales (en 1931). En él se estudian por primera vez las ecuaciones de Wiener-Hopf. 1931-1932 Profesor visitante en la Universidad de Cambridge. Da conferencias sobre La integral de Fourier y sus aplicaciones en el Trinity Collegue y publica su primera monografía sobre este tema en Cambridge University Press. Participa en el ICM de Zurich como representante del MIT. 1932 Publica "Teoremas Tauberianos" en Ann. of Math. Catedrático en el MIT. 1933 Premio Bocher. Elegido miembro de la Academia Nacional de Ciencias. Conoce a Arturo Rosenblueth, quien será su mejor amigo el resto de su vida. Visita de Paley, con quien trabajaría sobre la transformada de Fourier en el dominio complejo. Caracterización de los filtros físicamente realizables. Muerte de Paley en un accidente de sky. 1934 Libro con Paley. 1935 Primera patente con Yuk Wing Lee. (Habría otras dos más en 1938). 1935-1936 Viaje a China, donde visita a Y.W. Lee en la Tsing Hua University de Pekín. Participa en el ICM de Oslo. Conoce a S. Mandelbrojt. 1937 Conferencia Dohme en la John Hopkins University sobre teoremas Tauberianos. 1938 Conferencia semicentenaria de la AMS. 1940 Memorandum sobre un ordenador digital. Comienza a trabajar con J. Bigelow en su proyecto para el estudio de baterías antiaéreas. 1941 Dimite como miembro de la Academia Nacional de Ciencias. 1942 Redacción del Diablo Amarillo: "Extrapolación, interpolación, y suavizado de series temporales estacionarias" (El informe verá la luz en forma de libro y para un público no restringido en 1949). Conoce a McCulloch. 1943 Conoce a Pitts. 1944 Creación, con J. van Neumann, de la "Sociedad Teleológica". 1946 Nombrado doctor honoris causa por el Tufts Collegue. Asiste a las tres primeras Conferencias Macy. En diciembre publica su carta de denuncia en The Atlantic Monthly. 1946-1950 Consigue, junto con Rosenblueth, una beca de la Fundación Rockefeller para que puedan visitarse todos los años, un año en el MIT y al siguiente en el Instituto Nacional de Cardiología de México. 1947 Congreso en Nancy sobre análisis armónico. Conoce a Freyrnann. 1948 Primera versión de Cibernética. (La segunda versión aparece en 1961). 1949 Lord & Taylor American Design Award. 1950 El uso humano de los seres humanos. (La segunda versión aparece en 1954). 1951 McCulloch y "sus chicos" se trasladan al Laboratorio de Investigación en electrónica del MIT. Wiener imparte una Conferencia Fullbright en París. Visita España, donde imparte una conferencia en Madrid. 1952 Ruptura con McCulloch. Premio Alvarega del Colegio de Médicos de Philadelphia. Imparte las conferencias Forbes-Haws en la Universidad de Miami. 1953 Ex-prodigio. Escuela de verano, con R. Fano y C. Shannon, sobre los problemas matemáticos de la teoría de la comunicación. 1955 Profesor visitante en Calcuta. 1956 Soy un matemático. Conferencia en Japón. Escuela de verano en la UCLA (repe­tirá en 1959,1961 y 1963) 1957 Doctor honoris causa por el Grinnell Collegue. Medalla Virchow de la Escuela médica Rudolf Virchow. 1960 Conferencias en la Universidad de Nápoles (vuelve en 1962). Visita a Rusia. Medalla de investigación ASTME. Profesor Emérito en el MIT. 1964 Medalla Nacional de Ciencias. Dios y Golem. Muere en Estocolmo de un ataque al corazón. Existe abundante material sobre la vida y obra de Wiener (basta echar un vistazo a las referencias, al final de este artículo). En español se han publicado las monografías [1] Y [14], aunque esta última está agotada, fuera de circulación. 2. OBRA La lista de aportaciones matemáticas importantes realizadas por Wiener es extensa y su temática es variada. En la siguiente tabla reflejamos aquellas que consideramos de mayor relevancia: Aportaciones matemáticas más relevantes de N. Wiener. Movimiento Browniano. Introducción de los procesos estocásticos, precursor de la teoría de la probabilidad en espacios de dimensión infinita. Fundamento matemático para el cálculo operacional de Heaviside. Definición de los espacios de Banach (originalmente denominados espaclOS de Banach- Wiener). Teoría del Potencial -solución del Problema de Zaremba. Análisis armónico generalizado y teoremas Tauberianos. Nueva demostración del teorema del número primo. Definición de la transformada de Fourier . Filtrado y teoría de la predicción Memorandum sobre la construcción de un ordenador digital (1940) Cibernética Caos homogéneo Entropía, teoría ergódica, filtros no lineales, etc. http://www.21stcenturywiener.org/ Evidentemente, en una reseña biográfica breve como la presente, no se pueden abordar una a una y en detalle todas las temáticas contenidas en la lista anterior. Es por ello que hemos optado, para dar una idea más precisa del tipo de trabajo que realizó nuestro personaje, por desarrollar sólo algunos de los items anteriores. Concretamente, en esta nota nos concentramos en el trabajo de Wiener relacionado con el análisis de Fourier. Un tratamiento detallado de toda la obra científica de Wiener, se puede encontrar en las monografías [4], [22]. Nosotros vamos a seguir aquí, en gran medida, los capítulos 3 y 4 de [4] y el artículo [5]. 2.1. Un paseo desde el cálculo operacional de Heaviside hasta las distribu­ciones, utilizando técnicas de análisis de Fourier. Desde el momento en que Wiener llegó al MIT, se asumió que él podría ser la persona que ayudaría a la gente del depar­tamento de ingeniería eléctrica a proporcionar un fundamento sólido a las diversas her­ramientas matemáticas que ellos usaban para sus propias investigaciones. Concretamente, la tarea más urgente que se le asignó fue el establecimiento de un fundamento matemático sólido para el cálculo operacional de Heaviside (HOC, en todo este artículo). Esta cuestión le fue propuesta por Jackson -que era el director del departamento en 1920 y quien había sido un amigo de Wiener durante su infancia. La idea principal del HOC es tratar al operador diferencial p = d/dt como un objeto algebraico incluido en un cuerpo (desconocido) e identificar su inverso algebraico q = p-1 con el operador integral q(x) =  f(t)dt. Con estas hipótesis, el HOC sería útil para la resolución de numerosas ecuaciones difer­enciales mediante el procedimiento de trasladar el problema diferencial en un problema meramente algebraico. Veamos, para entender cómo funciona la técnica que acabamos de describir, cómo se aplica este método a un ejemplo sencillo. Supongamos que queremos resolver un circuito RC, el cual queda descrito por la ecuación diferencial ordinaria RCy'(t) + y(t) = x(t), donde R, C son constantes -la resistencia y la conductancia del circuito-, y x(t) = i(t)u(t) es la diferencia de potencial introducida en el sistema. Aquí u(t) representa la función de Heaviside, que vale 0 para t ≤ 0 y 1 para t > 0. Finalmente, y(t) es la salida del sistema. Consideremos el caso especial dado por x(t) = Eu(t), donde E es una constante dada. Este es un ejemplo importante, pues modeliza el problema de introducir en el instante t = 0 una diferencia de potencial constante E en el sistema, y ver cuál es la respuesta del mismo. Si queremos usar, para resolver este problema, las técnicas del HOC, operamos del siguiente modo: comenzamos escribiendo el problema como (RCp + l)y(t) = x(t), de modo que y(t) = x(t). A continuación, desarrollamos el cociente como serie de potencias de q = 1/p, (1)       Por último, utilizamos que para k = 1,2, ... , de modo que que es la solución exacta de la ecuación. Claro que hay varios pasos en la argumentación anterior que no tienen un sustento riguroso. Por ejemplo, no sabemos qué pueda significar q = 1/p y tampoco está claro en qué sentido converge la serie de potencias dada por (1). Por tanto, deberíamos preguntamos cuál es la razón por la que, sin embargo, este método nos proporciona una respuesta correcta. A Wiener le pidieron que encontrase una explicación del HOC que fuese satisfactoria desde un punto de vista matemático. En su artículo de 1926 [30], Wiener describía esta cuestión del siguiente modo: El problema de obtener una interpretación rigurosa del cálculo operacional de Heaviside (...) está aún abierto. Existen varios caminos que parecen llevar  a este objetivo. Junto con la teoría de núcleos permutables de Volterra y la teoría de transformaciones de Pincherle, la transformada de Laplace y la integral de Fourier parecen ser herramientas prometedoras. Sin embargo, al igual que la teoría de Pincherle, la teoría de la transformada de Laplace es aplicable directamente sólo a las funciones analíticas. La integral de Fourier, que puede tratarse como derivada de una forma compleja de la tmnsformada de Laplace, no está sujeta a esta objeción. Por otra parte, las funciones a las que se puede aplicar- la forma clásica de la integral de Fourier, están sujetas a restricciones muy severas en su comportamiento en el infinito. Wiener estaba convencido de que un uso adecuado del análisis de Fourier proporcionaría una solución al problema. La razón fundamental que le conducía a esta conclusión es que el HOC hace un uso extensivo de los operadores de la forma , donde es una serie de potencias, y éstos satisfacen el siguiente resultado técnico: Lema 2.1. Sean g(t) = eiwt y f(t) = eiαt. Entonces L = g() satisface la fórmula: L(f) = f(iw) f(t) = g(iα) f(t) Demostración. Por definición, , de modo que lo que concluye la prueba. Wiener explicaba en su artículo la importancia de esta propiedad del siguiente modo: Cuando se aplica a la función enit, el operador f(d/dt) es equivalente al multiplicador. El resultado de aplicar un operador dado a una integral de Fourier-dada puede ser, por tanto, concebido de manera natuml como la multiplicación de cada término de la forma enit en la integral por un multiplicador que solamente depende de n. Esto es, el operador d/dt no tiene una localización particular en el dominio complejo sino que recorre hacia arriba y abajo todo el eje imaginario. Así pues, resulta demasiado ambicioso pensar que, en general, cualquier desarrollo en serie u otra representación analítica arbitraria de f tendrá el efecto de que f(d/dt) converge al ser aplicado a una función arbitraria. En este artículo se adopta la estrategia de disectar una función en un número finito o infinito de rangos de frecuencia y aplicar en cada rango la expansión concreta del operador que produzca resultados convergentes sobre ese rango. Es gracias a este método de disección que las series asintóticas de Heaviside son justificadas. Las ideas que acabamos de mostrar fueron fundamentales para que Wiener se lanzase a la creación de un nuevo análisis de Fourier, al que bautizaría como "análisis de Fourier generalizado" (GHA en lo sucesivo), que sería aplicable a funciones muy generales. En particular, se trataba de construir un proceso de análisis-síntesis de funciones aperiódicas que no decaen en el infinito. Una motivación muy poderosa para el estudio de esta cuestión radicaba en el hecho de que este tipo de funciones, para las que el análisis armónico clásico no es aplicable, aparecen en numerosos contextos de la física. Las dos teorías del análisis armónico, formadas por las series de Fourier clásicas y la teoría de Plancherel, no abarcan todas las posibilidades del análisis armónico. Las series de Fourier se restrin­gen a la clase muy especial de las funciones periódicas, mientras que la teoría de Plancherel se restringe a estudiar funciones que son de cuadrado sumable y, por tanto, tienden en media a cero cuando su argumento tiende a infinito. Ninguna de estas teorías es apropiada para el tratamiento de un rayo de luz blanca, que se supone perdura por un tiempo ilimitado. Sin embargo, los físicos que se enfrentaron por primera vez al pmblema de descomponer la luz blanca en sus componentes se vieron forzados a utilizar una u otra de estas herramientas ... En su artículo de 1926 Wiener también inició el estudio de los operadores entre espacios de funciones, ya que éstos eran una herramienta básica para el HOC. En particular, intro­dujo el concepto de operador causal (o, con la terminología original, operador retrospec­tivo), lo cual le permitió la demostración de varios resultados interesantes. El operador L se dice "causal" si y solo si para todo número real t se tiene que, si en­tonces L(f)(t) = L(g)(t). Estos operadores son muy importantes en la ingeniería, porque modelan los sistemas que son realizables en tiempo real y, con una mínima variación, sirven para describir todos los sistemas lineales que son físicamente realizables. Wiener los investigó con insistencia en las décadas de 1920 y 1930 y, finalmente, demostró algunos resultados fundamentales sobre ellos. En particular, demostró, con la ayuda de su alumno de doctorado Lee [18] que todo sistema físicamente realizable es, de hecho, realizable en el metal. Esto significa que fueron capaces de construir una red eléctrica, posteriormente bautizada con el nombre de "red de Lee- Wiener", que aproxima el comportamiento de cualquier operador físicamente realizable con precisión arbitraria. Es más, Wiener y Lee crearon una patente para los derechos de explotación de esta red en Estados Unidos y luego se la vendieron a la compañía telefónica AT&T [35]. Creían que la AT&T usaría su invento y les daría fama, por lo que acordaron un precio muy a la baja. Sin embargo, la compañía sólo quería disponer de la patente para guardarla en un cajón y, de ese modo, evitar que otros pudieran utilizar la red de Lee-Wiener en sus inventos, lo cual suprimía la posibilidad de una verdadera competencia. Wiener se sintió terriblemente frustrado por estos hechos, lo cual le llevó a odiar amargamente a la AT&T, a arremeter contra ellos en su libro "Inventar" e incluso a escribir una novela -que intentó que se llevara al cine, pero no lo logró- que tituló "El tentador" y en la que se denunciaban este tipo de acciones por parte de las grandes compañías. Otro resultado muy importante que consiguió demostrar, con la ayuda del matemático inglés Paley, es la caracterización matemática, en el dominio de la frecuencia, de los operadores físicamente realizables, como los operadores de la forma L(X)(ξ) = X(ξ)H(ξ) para los que H(ξ) ∈ L2() y Evidentemente, este resultado es de enorme profundidad. Wiener estaba tan orgulloso de haberlo probado que lo mencionó de forma reiterada en sus escritos matemáticos y biográficos. Por ejemplo, en [33, p. 37] afirmaba: Este resultado es parte fundamental para la teoría de filtros. Establece que, en todo circuito eléctrico, sea cual sea éste, la atenuación, tornada como función de la frecuencia w y dividida por 1+w2, define una función de la frecuencia que es absolutamente integmble. Esto es consecuencia del hecho de que la atenuación es el logaritmo del valor absoluto de la transformada de Fourier- de la respuesta al im­pulso unidad f(t), la cual se anula para valores negativos de t; o, en otras palabras, porque ninguna red eléctrica puede predecir- estrictamente el futuro. Así pues, ningún filtro físicamente realizable puede tener­ una atenuación infinita en una banda finita de frecuencias. El filtro perfecto es físicamente irrealizable por su propia naturaleza, no simplemente por lo inapropiado de los medios que tenemos a nuestra dis­posición. Ningún instrumento que actúe solamente sobre el pasado posee una capacidad de discriminación lo suficientemente fina como para separar una frecuencia de otra con absoluta precisión. Y, en su autobiografía, cuando hablaba de sus investigaciones con Payley [31, p. 168], afirmaba: Un problema interesante que atacamos conjuntamente fue establecer las condiciones precisas que res­tringen a la transformada de Fourier de una función que se anula sobre una semirecta. Este es, por sus propios méritos, un problema matemático profundo, y Paley se enfrentó a él con vigor. Pero lo que fue una ayuda para mí, aunque no resultó útil para Paley fue que se trata, esencialmente, de un problema en ingeniería eléctrica. Se sabía desde hacía muchos años que existe una cierta limitación sobre la precisión con la que un filtro de ondas eléctrico puede eliminar una determinada banda de frecuencias, aunque los físicos y los ingenieros no estaban al tanto de la base matemática profunda que existe tras esta limitación. Al resolver lo que para Paley no era más que un hermoso y difícil problema de ajedrez, completamente autocontenido, yo mostré al mismo tiempo que las limitaciones bajo las cuales estaban trabajando los ingenieros eléctricos son precisamente aquellas que imviden al futuro tener algún tipo de influencia sobre el pasado. Como la motivación fundamental del cálculo operacional de Heaviside era su uso para la resolución de algunos problemas de la física o la ingeniería, Wiener decidió utilizar su método para resolver la que entonces se consideraba la ecuación más importante de la ingeniería eléctrica: la ecuación del telégrafo. Ésta se escribe como sigue: vxx = RCvt + LCvtt; v(x, 0) = 0, v(0, t) = f(t). Aquí, v(x, t) representa el voltaje en un punto de un cable que se encuentra a distancia x del origen (el punto donde se introduce el voltaje) y en el instante de tiempo t. Así, f(t) = v(0, t) representa el voltaje que se introduce en un extremo del cable (el origen) en el instante de tiempo t y nosotros estamos interesados en conocer la cantidad v(L, t), donde L representa la longitud del cable. Fijémonos un poco más detenidamente en esta ecuación. Evidentemente, la entrada f(t) de un mensaje telegráfico estándar es una función discontinua, por lo que podemos asumir, en principio, que v(0,·) es discontinua. Entonces, ¿qué significado podemos dar a las derivadas que aparecen en la ecuación del telégrafo? Sobre esta cuestión Wiener se pronunció del siguiente modo: (...) existen casos en los que v debe ser tratada como una solución de nuestra ecuación diferencial en un sentido general aún cuando ésta no posea derivadas de todos órdenes que aparecen indicadas en la ecuación y, de hecho, aún cuando ésta no sea diferenciable de ningún orden. Es una cuestión interesante el precisar el modo en el que una función no diferenciable pueda satisfacer, en un sentido generalizado, una ecuación diferencial. Evidentemente, el problema de proporcionar un concepto de solución para las ecuaciones diferenciales que permita tratar como soluciones de las mismas a funciones que en realidad no son derivables, era. ya un problema viejo. Piénsese por ejemplo, que podemos introducir como condición inicial para el problema de la cuerda vibrante, un pulso triangular. Estos problemas están modelados por ecuaciones diferenciales, pero admiten como condiciones iniciales funciones no derivables y, sin embargo, siempre tienen una solución física. He ahí la enorme motivación que existía, mucho antes incluso de la aparición en escena de Wiener, para resolver el problema que estamos discutiendo. Wiener, de hecho, fue capaz de proporcionar la idea apropiada para resolver estas ecuaciones "en un sentido general": "(...) Sea G(x, y) una función positiva e infinitamente diferenciable dentro de una cierta región polig­onal acotada R del plano XY, con la propiedad de que ella y todas sus derivadas se anulan en la periferia de ∂R y que vale identicamente cero en el exterior de R. Entonces existe una función G1(x, y) tal que para toda función u con derivadas acotadas sumables de los primeros dos órdenes, como puede demostrarse integrando por partes. Así pues, una condición necesaria y suficiente para que u verifique la ecuación diferencial Auxx + Buxy + Cuyy + Dux + Euy + Fu = 0 en casi todo punto es que para toda función G1(x, y) (pues las funciones G forman un sistema completo sobre cualquier región), y que posea las derivadas requeridas. Podemos, por tanto, tratar las funciones que son ortogonales a todas las funciones G1 como soluciones de la ecuación diferencial en un sentido generalizado." Así, el artículo de 1926 fue también importante porque en él Wiener introdujo un con­cepto de "solución generalizada" de una ecuación en derivadas parciales que, en términos modernos, es exactamente el mismo que el concepto de "solución débil" pma estas ccua­ciones, Podemos, pues, afirmar que Wiener introdujo las distribuciones (en el sentido de Schwartz) ¡con dos décadas de antelación! No hace falta añadir que Wiener demostró que la solución que él obtenía para la ecuación del telégrafo en base al uso de su versión depurada del cálculo operacional de Heaviside, era de hecho una solución generalizada (o solución débil, con la terminología actual) de dicha ecuación. 2.2. Análisis armónico generalizado y teoremas Tauberianos. El éxito obtenido con su trabajo en el cálculo operacional de Heaviside, así como el estudio de algunos fenómenos físicos, como la luz blanca, supusieron una fuerte motivación para que Wiener se lanzara a lo que entonces parecía una empresa imposible: ampliar el abanico de funciones a las que es posible aplicar el análisis armónico. En particular, introdujo el conjunto S de las funciones f: → que son medibles en el sentido de Lebesgue y cuya función de covarianza, está bien definida para todo t ∈ y, además, satisface que Φ ∈ C(). Este conjunto de funciones, que desde entonces se ha bautizado como la clase de Wiener, es lo suficientemente amplio como para abarcar el estudio de todos los procesos físicos y los contextos matemáticos en los que Wiener estaba interesado. En particular, permite el estudio de la luz blanca, la clase de Bohr-Besicovitch de funciones casi-periódicas, y las funciones muestrales asociadas a numerosos procesos estocásticos (incluyendo el movimiento Browniano idealizado, o proceso de Wiener). Desde una perspectiva meramente matemática, las funciones de covarianza son intere­santes porque, cuando las calculamos a partir de un polinomio trigonométrico f(t) = , obtenemos que lo que se interpreta afirmando que la función de covarianza Φ(t) preserva la información de f(t) relativa a la amplitud de su espectro, aunque elimina todo lo relacionado con las fases. En particular, conserva la información relativa a la energía de la señal f(t). La función de covarianza posee numerosas propiedades que son interesantes. Por ejemplo, satisface la desigualdad , lo cual implica que Φ(t) es continua en el origen si y solo si es continua en todo punto de la recta real, pues Φ(0) es un número real. Además, se puede interpretar como la potencia de la señal f(t). Wiener observó que si se intenta identificar qué parte de la potencia de f(t) se encuentra concentrada entre las frecuencias -A y A y se toma el límite A → +∞, sucede que éste coincide con limε→0 Φ(ε) y posee un valor menor o igual que Φ(0). En consecuencia, Wiener restringió su atención a aquellas funciones cuya covarianza asociada es una función continua, pues las otras funciones necesitarían, para una descripción basada en técnicas del análisis armónico, del uso de ciertas "frecuencias ocultas", lo cual es algo evidentemente desagradable. Para introducir su análisis armónico, Wiener necesitaba definir un concepto de espectro que fuese aplicable a la clase S y construir una transformada que enviase los elementos de S a su espectro. Además, esta transformada debía ser necesariamente invertible y preservar la energía de las señales. Un primer paso, para la construcción de su transformada, fue la demostración de que los elementos de la clase de Wiener satisfacen la desigualdad , la cual garantiza que, desde el punto de vista de la norma energía, existe el siguiente límite: La función W(f) que acabamos de definir resultó de enorme importancia, pues se pudo demostrar que si f(t) es una señal de energía finita y F(ξ) es su transformada de Fourier, entonces W(f) es una primitiva de F(ξ). Además, Wiener también demostró que (este límite se toma nuevamente en el sentido de la norma energía) y, como consecuencia, existe una función Λ(ξ) que es monótona decreciente, no negativa, de variación acotada y satisface la fórmula . Lo que es más, Λ(ξ) se puede recuperar a partir de la función de covarianza gracias a la expresión Por último, si imponemos que limξ→-∞ Λ(ξ) = 0 entonces Λ(ξ) representa la potencia total incluida en el espectro de la señal f(t) para las frecuencias que se encuentran entre -∞ y ξ. Wiener denominó a la función Λ(ξ) el espectro integrado o periodograma f(t). El espectro integrado puede adoptar formas variadas, incluyendo los casos de espectro discreto, continuo y mixto, y Wiener se dedicó de forma muy intensa al estudio de cada uno de estos casos. Es importante observar que todos los resultados que hemos enunciado aquí sobre el espectro integrado fueron restablecidos en los años setenta del siglo pasado por Benedetto [7], en términos distribucionales. De hecho, un buen resumen de ellos descansa sobre la afirmación de que la transformada de Wiener W(f) está bien definida para toda función f(t) que satisface la desigualdad , y, además, satisface que W(f)' = (f), donde tanto la transformada de Fourier (f), como la derivada W(f)', como la igualdad en la fórmula anterior, se toman en sentido distribucional. Para poder completar su teoría y, además, estar en disposición de atribuirle las cuali­dades de un "análisis armónico", Wiener necesitaba demostrar un resultado que pudiera clasificarse como análogo al conocido teorema de Plancherel. Este objetivo fue, en re­alidad, el más duro de obtener. De hecho, aunque ya en 1926 Wiener disponía de una formulación precisa para su resultado, el cual afirma que la fórmula se satisface para toda función f(t) de la clase de Wiener S, la demostración del teorema se resistió durante años, porque pasaba por probar que si 9 is una función positiva, entonces (2)                un hecho nada fácil de demostrar. En efecto, Wiener necesitó tirar de una gran cantidad de tiempo e imaginación para lograr una prueba rigurosa de la identidad anterior. Fue precisamente la necesidad de probar esta fórmula lo que le llevó al estudio de los llamados teoremas Tauberianos. Hardy y Littlewood habían demostrado una buena colección de resultados de este tipo, en los que se estudia el comportamiento asintótico, para y → 0+, de numerosas integrales del tipo . Para estudiar estas integrales, Wiener tuvo la idea de realizar el cambio de variables x = e-s, y = e-t, y utilizar las nuevas funciones f(u) = Φ(eu), g(u) = e-uφ(e-u ), lo cual provoca el siguiente conjunto de igualdades: Así pues, via este sencillo cambio de variables, Wiener transformó el estudio de los teo­remas Tauberianos de Hardy y Littlewood en el estudio del límite limt→+∞(g*f)(t), que es un problema sobre convoluciones o (como le gustaba a Wiener llamarlas) filtros de ondas. En pocas palabras, Wiener se llevó el problema original a su propio terreno (el estudio de la transformada de Fourier, los filtros de ondas, etc.), transformándolo en el siguiente interesante problema: dado un filtro de ondas L(f) = g * f (i.e., dado el único filtro de ondas cuya respuesta al impulso unidad está dada por g(t)), ¿para qué entradas f(t) podemos garantizar que la salida y(t) = L(f)(t) posee un límite bien definido cuando t→+∞? Además, demostró el siguiente resultado: Teorema 2.1 (Gran Teorema Tauberiano de Wiener). Supongamos que f ∈ L∞() y g ∈ L1(). Si existe una función g0 ∈ L1() tal que su transformada de Fourier G0 = (g0) satisface G0(ξ) ≠ 0 para todo ξ ∈ y existe el límite (3)          entonces el límite limt→∞(g*f)(t) también existe y, además, satisface (con la misma constante A) la igualdad (4)        Además, si la función g0(t) satisface y para todo par de funciones f ∈ L∞(), g ∈ L1() se tiene que (3) implica (4), entonces la transformada de Fourier de g0 satisface (g0)(ξ) ≠ 0 para todo ξ ∈ . Wiener demostró, además, una versión del teorema anterior adaptada al uso de convolu­ciones contra medidas, , donde se ha sustituido la función f(t) por una medida η definida en toda la recta real. Es precisamente el uso de estas medidas lo que hace posible establecer un puente entre el problema de estimar integrales impropias y el de estudiar la convergencia (o divergencia) de una serie numérica, que era el verdadero origen de los teoremas Tauberianos. Evidentemente, la demostración del Gran Teorema Tauberiano de Wiener es una tarea harto complicada. Para abordarla, Wiener tuvo que demostrar una amplia batería de resultados auxiliares, el más importante de los cuales era el siguiente hermoso resultado: Lema 2.2 (Pequeño teorema Tauberiano de Wiener o Lema de Wiener). Supongamos que f(t) es una función continua y 2π-periódica tal que f(t) ≠ 0 para todo t ∈ , y denotemos por a la sucesión de los coeficientes de Fourier f. Entonces ∈ l1() si y solo si ∈ l1() La prueba original de Wiener de su pequeño teorema Tauberiano fue completamente frontal. Lo que hizo fue, sencillamente, calcular los coeficientes del desarrollo en serie de Fourier de 1/f en términos de los coeficientes de Fourier de f y, a continuación, realizó una serie de estimaciones que le condujeron de forma muy elegante al resultado deseado (tras utilizar varios trucos delicados, incluyendo la multiplicación por cierta función trapezoidal y el uso de particiones de la unidad). Es probable que, debido al método de demostración utilizado, Wiener no tuvo conciencia de que su lema proporcionaba una hermosa caracterización de los elementos invertibles de l1(), cuando este se interpreta como un álgebra de Banach con la convolución de sucesiones como operación de producto. Este hecho fue resaltado unos años más tarde por el matemático ruso 1. M. Gelfand, y fue el punto de partida pélra que éste creara una nueva rama del análisis funcional: las álgebras de Banach. Existe aún otro punto de vista desde el cual el Lema de Wiener se puede interpretar como un resultado natural. La idea principal consiste en utilizar el hecho, ampliamente conocido por los que trabajan en análisis armónico y en teoría de aproximación, de que existe una estrecha relación entre la velocidad con la que decae a cero la sucesión de coefi­cientes de Fourier de una función, y su suavidad. Concretamente, cuanto más rápidamente decae a cero la sucesión de coeficientes de Fourier de f, más suave es f. y también vicev­ersa: a mayor suavidad de f más rápidamente decae a cero la sucesión de sus coeficientes de Fourier. AsÍ, el Lema de Wiener establece que las funciones f que son algebraicamente invertibles y que son suaves hasta cierto orden (concretamente, suaves en el sentido que fija la relación ∈ l1() tienen la cualidad de que sus inversos algebraicos son suaves del mismo orden. Es más, podemos afirmar, orgullosos por nuestra partici­pación en este teorema concreto, que un resultado de este tipo se satisface para "todos" los conceptos de suavidad. Este resultado ha sido demostrado recientemente por Almira y Luther en [3], para el caso de los conceptos de suavidad asociados a la pertenencia a un cierto espacio de aproximación y, posteriormente, ha sido demostrado en otros muchos contextos por Grochenig y Klotz (ver [13], [16], [17]), entre otros. La importancia de los teoremas Tauberianos de Wiener no se limita a su originalidad. Fue muy importante que él pudiera recuperar, como consecuencia de su Gran Teorema Tauberiano, todos los resultados clásicos que habían abordado previamente Rardy y Lit­tlewood. Además, Wiener fue capaz de demostrar algunos teoremas nuevos en este área. En particular, demostró un teorema Tauberiano para las series de Lambert, a partir del cual se sabía cómo obtener una demostración muy elegante del teorema del número primo (y que sólo había sido conjeturado con anterioridad al trabajo de Wiener, resistiendo nu­merosos ataques de otros matemáticos importantes). Además, Wiener fue capaz, por fin, de demostrar la validez de (2) y, como consecuencia, colocar sobre suelo firme su análisis armónico generalizado. Tan pronto como su amigo Tamarkin, que era entonces catedrático en la Universidad de Brown, supo que Wiener había demostrado los resultados que acabamos de exponer, le animó con enorme insistencia para que redactara dos artículos monográficos extensos en los que se detallaran sus avances tanto sobre los teoremas Tauberianos como sobre el análisis armónico generalizado. Wiener redactó ambos trabajos. En el primero se incluían los resultados relacionados con el GHA y fue publicado en la revista Acta Math­ematica en 1930. El segundo, dedicado a los teoremas Tauberianos, apareció en Annals of Mathematics en 1932. Fue precisamente con la publicación de estas memorias que Wiener logró una plaza en el "Olimpo" de las matemáticas, avanzando con fuerza hacia la primera línea de la investigación y obteniendo por primera vez el reconocimiento de los matemáticos norteamericanos, algo que aún no había conseguido a pesar de sus importantes contribuciones relacionadas con el movimiento Browniano, la teoría del potencial o el cálculo operacional de Heaviside. En 1933 ganó el premio Bocher y en 1934 fue nom­brado Fellow de la academia nacional de ciencias de EEUU. Aunque Wiener fue admirado en vida (y posteriormente) por ingenieros y físicos, gracias a sus contribuciones a la teoría de filtros, la teoría de la predicción, la cibernética, el movimiento Browniano, etc., los matemáticos de todo el mundo le conocen, sobre todo, por sus teoremas Tauberianos, y esta contribución puede considerarse de tal importancia que por sí misma bastaría para concederle un lugar de honor en la historia del análisis matemático. BIBLIOGRAFÍA [1] D. R. Adams, Potential and Capacity before and after Wiener, Proc. of the Centenary Simposia on N. Wiener, 63-80. [2] J. L. Aguiar Benítez, Norbert Wiener, Números 43-44 (2000) 319-322. [3] J. M. Almira and U. Luther, Inverse closedness of approximation algebras, Journal of Mathematieal Analysis and Applications 314 (1) (2006) 30-44. [4] J. M. Almira, Norbert Wiener. Un matemático entre ingenieros, en "La matemática en sus personajes" 41, Ed. Nivola, 2009. [5] J. M. Almira, A. E. Romero, A note on Norbert Wiener contributions to Harmonic Analysis and Tauberian Theorems, in "Mathematical Models in Engineering, Biology, and Medicine", American Institute of Physics Conference Proceedings, 1124 (2009) 19-28. [6] .J. M. Almira, A. E. Romero, How distant is the ideal filter of being a causal one?, At.lant.ic Electronic .J. of Maths. 3 (2008) 47-56 (disponible en http://www.aejm.ca/V3N1/ Almira.V3Nl.pdf). [7] J. J. Benedetto, Generalized Harmonic Analysis and Gabor and Wavelet Systems, in Proceedings 01 the NOTbert Wiener Centenary Congress, V. Mandrekar and P. R. Masani Editors, p. 85-113, AMS Bookstore, 1994. [8] A. G. Bose, Ten years with Norbert Wiener, Conferencia presentada en" A symposium on the Legacy of Norbert Wiener in Honor of the 100th Anniversary of his Birth", Cambridge, MA., 1994. [9] Felix Browder (editor). Norbert Wiener: 1894-1964. Providence, RI: Bulletin of the American Math. Society 72, Number 1, Part 2 (1966) (disponible en http://projecteuclid.org) [10] F. Conway, J. Siegelman, Dark hero of information age. In search of Norbert Wiener, the father of Cybernetics, Basic Books, 2004. [11] H. Freudenthal, Norbert Wiener, en Dictionary of Scientifie Biography, Vol. XIV, Chas. Cribner's Sons, 1976, 344-347. [12] 1. Grattan-Guinness, Wiener on the logies of Russell and Sehroder, Annals of Seienee 32 (1975) 103-132. [13] K. Grochenig, A. Klotz, Noncommutative approximation: Inverse closed suba.lgebras and off-diagonal deeay of matrices, Constr. Approx. [14] S. J. Heims, J. von Neumann y N. Wiener (1) y (2), Biblioteca Salvat de Grandes Biografías, Vols 81 y 82, 1986. [15] D. Jerison, I.M. Singer, D. W. Stroock, (Eds.), The legacy of Norbert Wiener: A Centennial symposium, Proc. Symposia in Pure Mathematics 60, AMS, 1997. [16] A. Klotz, Spectral invariance of Besov-Bessel subalgebras, J. Approx. Theory 164 (2) (2012) 268-296. [17] A. Klotz, Inverse c10sed ultradifferential subalgebras, en Arxiv:l0l2.3362, 2012. [18] Y. W. Lee, Synthesis of ElectTic NetwoTks by the use the FouTÍeT tmnsform of Laguerre's functions, Ph. D. dissertation, M.I.T., Cambridge, Massachusets, June 1930. [19] Y. W. Lee, Norman Levinson, and W. T. Martin (Editors), Selected papers of Norbert Wiener: Expository papers by Y. W. Lee, Norman Levinson, and W. T. Martin, The MIT Press, Cambridge, Mass., 1964. [20] V. Mandrekar, Mathematical work of Norbert Wiener, Notices of the AMS, 42 (6) (1995), 664-669. [21] M. B. Marcus, Book review: Dark hero of the information age: In search of Norbert Wiener the father of cybernetics, by F. Conway and J. Siegleman, Notices of the AMS, 53 (2006) 574-579. [22] P. R Masani, Norbert Wiener (1894-1964), Vita Mathematica, 5, Birkhiiuser, 1990. [23] L. Montagnini. Le armonie del disordine: Norbert Wiener matematico-filosofo del Novecento. Venice, Italy: Istituto Veneto di Scienze, Lettere ed Arti. 2005. [24] RE.A.C. Paley and N. Wiener, FouTÍeT tmnsfoTms in the complex domain, Amer. Math. Soco Col­loquium Publications XIX, 1934. [25] N. Wiener, The average of an analytic functional, Proc. Nat. Acad. Sic. USA 7 (1921) 253-260. [26] N. Wiener, The average of an analytic functional and the Brownian movement, Proc. Nat. Acad. Sic. USA 7 (1921) 294-298. [27] N. Wiener, Differential space, J. Math. and Physics 2 (1923) 131-174. [28] N. Wiener, The Dirichlet problem, J. Math. and Physics 3 (1924) 127-146. [29] N. Wiener, Une condition nécessaire et suffisante de possibilité pour le probleme de Dirichlet, C.R. Acad. Sci. Paris 178 (1924) 1050-1054. [30] N. Wiener, The Operational Calculus, Mathematische Annalen 95 (1926) 557-584. [31] N. Wiener, Generalized Harmonic Analysis, Acta Math. 55 (1930) 117-258. [32] N. Wiener, Tauberian Theorems, Ann. of Math. 33 (1932) 1-100. [33] N. Wiener, Extmpolation, inteTpolation and smoothing of stationaTY time seTies, Technology Press of the M.I.T. and John Wiley and Sons, Inc., New York, 1948. [34] N. Wiener, 1 am a mathematician, The M.I.T. Press, 1956. [35] N. Wiener and Y.W. Lee, Electric network system, U.S. Patent 2024900, December 17, 1935.
Viernes, 25 de Enero de 2013 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Ricardo Moreno Castillo (Universidad Complutense de Madrid)
Brahmagupta vivió durante el siglo VI de nuestra era. Su obra más importante es Brama Sputa Siddhanta (El sistema revisado de Brama), un texto de astronomía que contiene varios capítulos sobre matemáticas. En otro trabajo astronómico, titulado Khanda Khadyaka, se encuentran dispersos algunos desarrollos trigonométricos de interés. Los números negativos En la obra de Brahmagupta aparece sistematizado, por primera vez en la historia, el cálculo con números negativos y el cero. Los griegos tuvieron una idea del vacío, pero no lo llegaron a tratar como un número. Y la regla de los signos, aunque subyacente en algunas fórmulas sobre productos de restas, nunca había sido enunciada explícitamente: Positivo dividido por positivo, o negativo por negativo es positivo. Cero dividido por cero es nada. Positivo dividido por negativo es negativo. Negativo dividido por positivo es negativo. Positivo o negativo dividido por cero es una fracción que tiene al cero por denominador A la luz de este texto se puede ver que para Brahmagupta 0/0 = 0. Sobre el significado de  a/0 (para un número a ≠ 0) no se atreve a pronunciarse. Las ecuaciones de segundo grado Las aportaciones más importantes de Brahmagupta están en el campo del álgebra. Para las ecuaciones cuadráticas da soluciones generales, proporcionando las dos raíces, sin desechar las negativas. La regla para resolver la ecuación ax2 + c = bx la enuncia así: Deja el número en un lado y en el otro el cuadrado de la incógnita menos la incógnita. Multiplica el número por cuatro veces el coeficiente del cuadrado, súmalo al cuadrado del coeficiente del término medio, y la raíz de esto menos el coeficiente del término medio dividido por dos veces el coeficiente del cuadrado es la incógnita.   Para aplicar esta regla a la ecuación x2 - 10x = -9 va haciendo los cálculos del siguiente modo: 4(-9) = -36, -36 + 100 = 64, √64 = 8, 8 - (-10) = 18 y 18/2 = 9. El teorema chino de los restos Dos números enteros a y b son congruentes respecto de otro entero m si su diferencia es múltiplo de m (o si dan idéntico resto al ser divididos entre m). Esto se escribe así: a ≡ b (mod m). El menor número congruente con a respecto de m se llama el resto de a en relación a m, y es justamente el resto de dividir a por m. Las congruencias mantienen las operaciones aritméticas, de modo que si a ≡ b (mod m) y c ≡ d (mod m), entonces a + c ≡ b + d (mod m) y ac ≡ bd (mod m). La idea de número congruente no fue claramente definida hasta el  siglo XVIII, pero fue utilizado desde mucho antes. Supongamos ahora que tenemos dos series de números enteros a1, a2,..., an y m1, m2,..., mn, y que queremos encontrar un número x para el cual se cumpla lo siguiente: x ≡ a1 (mod m1) x ≡ a2 (mod m2) ................... x ≡ an (mod mn) El llamado teorema chino de los restos, afirma que la condición necesaria y suficiente para que el número buscado exista consiste en que ai ≡ aj (mod mij), siempre que i ≠ j, y siendo mij el máximo común divisor de mi y mj. En el Brama Sputa Siddhanta se encuentra el siguiente problema que es un caso particular del teorema chino: Tenemos una cesta de huevos. Si los cogemos de dos en dos, sobra uno, si de tres en tres, sobran dos, si de cuatro en cuatro, sobran tres, si de cinco en cinco, sobran cuatro, si de seis en seis, sobran cinco, y si los cogemos de siete en siete, no sobra ninguno. ¿Cuál es el mínimo número de huevos que puede haber en la cesta? Si x es el número de huevos, tenemos la siguiente colección de ecuaciones: x = 2y + 1 x = 5v + 4 x = 3z + 2 x = 6w + 5 x = 4u + 3 x = 7y El problema se resuelve aplicando sucesivamente el método de Aryabhata, y se llega de este modo a la solución más pequeña posible, que es 119. En el lenguaje de los números congruentes, el problema puede  ahora ser formulado de esta manera: x ≡ 1 (mod 2) x ≡ 4 (mod 5) x ≡ 2 (mod 3) x ≡ 5 (mod 6) x ≡ 3 (mod 4) x ≡ 0 (mod 7) Es fácil comprobar que cumple las hipótesis del teorema chino. Así que, antes de resolverlo, ya se sabe que tiene solución. La ecuación de Pell Entre los problemas indeterminados que aparecen en la obra de Brahmagupta ocupa un importante lugar la ecuación que la posteridad llamaría ecuación de Pell: x2 - Dy2 = 1 Si D = d2, no hay soluciones (salvo x = 1 e y = 0): si D = d2, resultaría que (x + dy)(x - dy) = 1, y esto es imposible. Pero si D no es un cuadrado, hay infinitas. Y es fácil encontrar las más sencillas por tanteo. Brahmagupta dio con un camino para, a partir de dos soluciones, fabricar una tercera. Este método (que en sánscrito se denomina samasa) es el siguiente: si los pares de números (α,β) y (χ,δ) son soluciones, también lo es el par de números calculados de la siguiente manera: σ = αχ + βδD ω = αδ + βχ Que esto es así es algo de muy simple comprobación. Sea, por ejemplo, la ecuación: x2 - 8y2 = 1 Fácilmente se llega a la solución (3,1). Compuesta consigo misma, tenemos otra solución (17,6), y componiendo las dos, una tercera (99,35). Y así sucesivamente. Triángulos racionales Un triángulos cuyos lados y cuya superficie son números racionales (y en consecuencia también sus alturas) se llama triángulo racional. Brahmagupta tiene la siguiente aportación sobre triángulos racionales. Si los lados de un triángulo son: entonces es racional, resultado de yuxtaponer dos triángulos rectángulos con un cateto común de longitud p (ver la figura que aparece a continuación): AP = p, AC = b, AB = c, PB = c - r y PC = b - q. El cuadrilátero cíclico Por tres puntos no alineados siempre pasa una circunferencia. Por cuatro puntos no siempre sucede así. Por esta razón no todo cuadrilátero tiene una circunferencia circunscrita. Los que sí la tienen se llaman cíclicos. Sobre ellos descubrió  Brahmagupta un hermoso teorema que pasamos a describir. Llamamos fórmula de Herón a la expresión del área de un triángulo en función de sus lados. Si éstos son a, b y c, y  p = (a+b+c)/2 es el semiperímetro, la superficie es: Esta fórmula ha sido muy utilizada por agrimensores y topógrafos, porque no necesita buscar la altura del triángulo, cosa que en terreno abierto no siempre es fácil. Brahmagupta encontró una fórmula que amplía la de Herón a cuadriláteros cíclicos. Si a, b, c y d son los lados del cuadrilátero y p es el semiperímetro, la superficie es: Si d = 0 sale la fórmula de Herón. Pero ignoramos (los textos sánscritos son muy oscuros) si Brahmagupta sabía que su teorema no era válido para cualquier cuadrilátero. Bibliografía DICKSON, L. E. (1971), History of de theory of numbers, Chelsea Publishing company, New York. GERICKE, H. (1984), Mathematik in Antike Orient, Springer-Verlag, Berlín. GHEVERGHESE, G. (1996), La cresta del pavo real, Ediciones Pirámide, Madrid. MORENO, R. (2011), Aryabhata, Brahmagupta y Bhaskara, tres matemáticos de la India, Editorial Nivola, Madrid. ORE, O.  (1988), Number Theory and its History, Dover Publications, New York. VAN DER WAERDEN, B. L. (1983), Geometry and Algebra in Ancient Civilizations, Springer-Verlag, Berlín.
Viernes, 27 de Julio de 2012 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Ricardo Moreno Castillo (Universidad Complutense de Madrid)
Bhaskhara vivió entre los años 1114 y 1185, y es el último gran matemático de la India medieval. En sus dos tratados, Vija-Ganita y Lilavati, reunió muchas aportaciones originales con diversos problemas procedentes de Brahmagupta y de otras fuentes. Lilavati es el nombre de la hija de Bhaskhara. El día de su nacimiento, cuenta una leyenda, los astros predijeron que moriría soltera. Pasaron los años y Lilavati se convirtió en una hermosísima mujer. Su padre, queriendo contrariar al destino, le buscó un apuesto joven como marido. Después convocó a los astrólogos más célebres, y entre todos señalaron la hora precisa en que la boda debía celebrarse. Prepararon una clepsidra, consistente en un depósito cilíndrico con la base perforada metido en un recipiente lleno de agua. De este modo, el agua entraba en el cilindro, y cuando éste quedara del todo hundido, sería llegado el momento para oficiar el matrimonio. Lilavati, curiosa, se asomó a la clepsidra, y una de las perlas que adornaban su vestido cayó dentro y obstruyó el orificio. Así, la hora propicia nunca llegó y el novio, aconsejado por los astrólogos, huyó. Bhaskhara aceptó la inutilidad de enfrentarse al destino y, para consolar a su hija, dio su nombre a su obra más importante. De esta manera, el nombre de Lilavati vivió para siempre, y esto fue para ella como una segunda vida. El cálculo con el cero En el Vija-Ganita aparece por primera vez la afirmación de que el resultado dividir por cero es infinito: La fracción en la que el denominador es cero se llama cantidad infinita. En esta cantidad en la cual cero es el divisor no hay alteración posible por mucho que se añada o se quite, lo mismo que no hay cambio en Dios infinito e inmutable. Después de esta cita se sostiene que (a/0)0 = a, Como si Bhaskhara no fuera capaz de mantener la claridad de ideas que se transparenta en el texto. Problemas de segundo grado Este problema de segundo grado aparece en el Lilavati: De un enjambre de abejas, un número igual a la raíz cuadrada de la mitad de su número total fue a libar a las flores. Después, un número de abejas igual a ocho novenas partes del enjambre total fue a libar al mismo lugar. Después fue un zángano, se introdujo en una de las flores y quedó atrapado dentro de ella. A su zumbido, su consorte llegó desde el exterior. ¿Cuántas abejas tenía el enjambre? Del enunciado se desprende que todas las abejas fueron a libar a las flores y que la pareja del zángano fue la última en llegar. Entonces, si x es el número de abejas del enjambre, el problema se traduce a la ecuación: Se puede considerar como incógnita a √x o, aun mejor, hacer x = 2z2, y entonces la nueva ecuación es 2z2 - 9z - 18 = 0. Su solución es 6, y el número de abejas es 72. Este otro problema, también de segundo grado procede en cambio del Vija-Ganita: En un bosque, un número de monos igual al cuadrado de la octava parte del total del número de monos está jugando ruidosamente. Los doce monos restantes, en una actitud más comedida, están en una colina cercana, molestos por los gritos que vienen del bosque. ¿Cuál es el número total de monos de la manada? El número x de monos es solución de la ecuación: A diferencia de la ecuación anterior, las dos soluciones x = 16 y x = 48 son igualmente admisibles. Problemas diofánticos De entre los problemas indeterminados del Lilavati, destacaremos el siguiente: buscar cuatro números cuya suma coincida con la de sus cuadrados. Esto equivale a resolver la ecuación: x + y + z + u = x2 + y2 + z2 + u2 Claramente carece de soluciones enteras, y habrá que conformarse con racionales. Bhaskhara da la solución x = 1/3, y = 2/3, z = 1 y u = 4/3. Este otro problema diofántico es del Vija-Ganita: Un hombre tiene 5 rubíes, 8 zafiros, 7 perlas y 90 monedas. Otro tiene 7 rubíes, 9 zafiros, 6 perlas y 62 monedas. Sabiendo que ambos son igualmente ricos, calcular los precios de cada clase de gema. Si x es el precio de cada rubí, y el de cada zafiro, y z el de cada perla, el problema da lugar a la ecuación: 5x + 8y + 7z + 90 = 7x + 9y + 6z + 62 que convenientemente simplificada, se convierte es esta otra: 2x + y - z = 28 Bhaskhara  supone z = 1, y la ecuación se convierte en 2x + y = 29, que proporciona las soluciones x = 14, y = 1 y z = 1, y también x = 13, y = 3 y z = 1. Un problema de tercer grado Entre los problemas diofánticos del Vija-Ganita tiene un enorme interés este de tercer grado. Se trata de encontrar dos números tales que la suma de sus cubos sea un cuadrado y la de sus cuadrados sea un cubo. Bhaskhara supone los números de la forma x = z2 e y = 2z2. Esto garantiza ya la primera condición: x3 + y3 = z6 + 8z6 = 9z6 = (3z3)2 Ahora hay que escoger z de modo que se cumpla la segunda: x2 + y2 = z4 + 4z4 = 5z4 El número más pequeño que convierte al último miembro en un cubo es z = 25, de manera que x = 625 e y = 1250 son los números buscados: 6252 + 12502 = 390625 + 1562500 = 1953125 = 1253 6253 + 12503 = 244140625 + 1953125000 = 2197265625 = 468752 Sobre un triángulo racional Bhaskhara planteó el problema de encontrar un triángulo rectángulo de lados racionales cuya superficie fuera numéricamente igual a la longitud de su hipotenusa. Para empezar, las longitudes de los lados del tal triángulo no pueden ser números enteros. En efecto, si la hipotenusa mide a y los catetos b y c, han de suceder estas dos cosas: a2 = b2 + c2 2a = bc Ambas llevan a que b2 = 4(b/c)2 + 4. Si b = c, b = √8, que no es un número entero. Si b ≠ c, b2 no es entero y tampoco b. Bhaskhara parte del triángulo de lados 3, 4 y 5, y postuló que el buscado por él tenía por lados 3x, 4x y 5x. Esto lleva a la ecuación 6x2 = 5x, cuya solución es x = 5/6.  Los lados miden entonces 5/2, 10/3 y 25/6. La culebra y el pavo real Uno de los problemas geométricos más populares del Lilavati es el siguiente: Un pavo real está posado en lo alto de un poste, en cuya base una culebra tiene su escondrijo. Localiza a la culebra a una distancia del pie del poste igual a tres veces su  altura, se lanza sobre ella mientras ésta intenta ganar su nido, y la apresa cuando ambos han recorrido la misma distancia. ¿A qué distancia del agujero tuvo lugar la captura? Bhaskhara resuelve el problema de la siguiente manera: si OA es el poste y la culebra es avistada en el punto C, entonces OA = h y OC = 3h (ver figura). Si la captura tiene lugar en un punto B a una distancia x de su base, entonces: h2 + x2 = (3h - x)2 Unos cálculos sencillísimos llevan a que x = 4h/3. Bibliografía DICKSON, L. E. (1971), History of de theory of numbers, Chelsea Publishing company, New York. GERICKE, H. (1984), Mathematik in Antike Orient, Springer-Verlag, Berlín. GHEVERGHESE, G. (1996), La cresta del pavo real, Ediciones Pirámide, Madrid. MORENO, R. (2011), Aryabhata, Brahmagupta y Bhaskara, tres matemáticos de la India, Editorial Nivola, Madrid. ORE, O.  (1988), Number Theory and its History, Dover Publications, New York. VAN DER WAERDEN, B. L. (1983), Geometry and Algebra in Ancient Civilizations, Springer-Verlag, Berlín.
Miércoles, 25 de Julio de 2012 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Ricardo Moreno Castillo (Universidad Complutense de Madrid)
Aryabhata, el más antiguo de los matemáticos hindúes cuyos trabajos se conservan, nació en el 476, en un lugar que desconocemos. Su obra más importante, llamada por la posteridad Aryabhatiya, es un libro en verso organizado en cuatro capítulos en el que se habla de muy diversos temas de astronomía y matemáticas. En él aparecen aportaciones propias del autor, y también se recogen y sistematizan resultados procedentes de los Siddhantas (una colección de textos donde teorías astronómicas de origen griego aparecen mezcladas con viejas creencias hindúes) y de obras ce científicos anteriores. Así, aunque el Aryabhatiya carece del orden expositivo de los Elementos, el papel de Aryabhata en la matemática India recuerda al de Euclides en la griega, porque de los escritos de los matemáticos anteriores solo han sobrevivido pequeños fragmentos. El método de inversión para resolver ecuaciones algebraicas En el Aryabhatiya aparecen algunas ecuaciones algebraicas resueltas por el método de inversión, que consiste en partir del resultado e ir haciendo las operaciones inversas en sentido contrario a como se dan en el enunciado. Una de ellas es la siguiente: Se multiplica un número por 3, al producto se le suman sus tres cuartas partes, la suma se divide por 7, del cociente se resta su tercera parte, la diferencia se multiplica por sí misma, al cuadrado se le resta 52, de la diferencia se extrae la raíz cuadrada, a la cual se la suma 8, dicha suma se divide por 10 y el resultado es finalmente 2. ¿Cuál es ese número? Entonces se procede de la siguiente manera: Si la última operación antes de llegar a 2 es dividir por 10, multiplicamos 2 por 10: 2 x 10 = 20. La penúltima operación consistió en sumar 8, entonces restamos 8: 20 - 8 = 12. La antepenúltima consistió en una raíz cuadrada, luego calculamos el cuadrado de lo que tenemos: 122 = 144. Antes de hacer la raíz se restó 52, que es lo que se ha de sumar ahora: 144 + 52 = 196. Antes de restar 52 se hizo un cuadrado, entonces se ha de hacer ahora una raíz cuadrada: √196 = 14. Previamente a la raíz, se había sustraído de una cantidad su tercera parte, lo cual equivale a multiplicarla por dos tercios, entonces multiplicamos por tres medios: 14 x (3/2) = 21. La cantidad multiplicada por tres medios era el resultado de dividir algo entre 7, por consiguiente se ha de multiplicar el último resultado por 7: 21 x 7 = 147. Lo que se había dividido entre 7 es el triple del número buscado al cual se le había sumado sus tres cuartas partes, lo cual equivale a multiplicar por siete cuartos, entonces hay que multiplicar ahora por cuatro séptimos y dividir por 3: (147 x (4/7)) / 3 = 28. El método de pulverización para resolver ecuaciones diofánticas Los matemáticos hindúes resolvieron las ecuaciones diofánticas lineales según un procedimiento llamado kuttaka, palabra sánscrita que se podría traducir por pulverización.  Vamos a describir el método a través del siguiente ejemplo: 29x + 4 = 8y Dividimos el coeficiente mayor entre el menor: 29 = 8 x 3 + 5, y hacemos el cambio y = 3x + u, lo que da lugar a una nueva ecuación 5x + 4 = 8u. Volvemos a dividir el coeficiente mayor entre el menor: 8 = 5 x 1 + 3, y hacemos x = u + v, y tenemos una tercera ecuación 5v + 4 = 3u. La tercera división es 5 = 3 x 1 + 2, hacemos u = v + w, y tenemos una cuarta ecuación 2v + 4 = 3w. La cuarta división es 3 = 2 x 1 + 1. Hacemos v = w + t, y tenemos una quinta ecuación 2t + 4 = w. El coeficiente de una de las incógnitas es 1, entonces damos la otra un cierto valor y hacemos el camino inverso: si t = 0, entonces w = 4, v = 4, u = 8, x = 12 e y = 44. Si se necesita la solución más pequeña posible, se divide 12 por 8 (el coeficiente de la y) y 44 por 29 (el coeficiente de la x), divisiones que dan lugar a los restos 4 y 15. Estos restos son la solución buscada. En cuanto tenemos una solución particular, es fácil comprobar que las demás proceden de la siguiente fórmula: x = 4 + 8m y = 15 + 29m Sobre progresiones aritméticas Una progresión aritmética es una sucesión de números cada uno de los cuales se deduce del anterior sumándole un numero fijo d llamado diferencia de la progresión. Entonces, si  es una progresión, a2 = a1 + d, y en general ap = a1 + (p-1)d. Aryabhata tiene algunas consideraciones sobre progresiones aritméticas. En primer lugar, explica cómo sumar m términos consecutivos, multiplicando el número de sumandos por el término central (dando así por sentado que el número de sumandos es impar), y para calcularlo proporciona la siguiente regla: El número de términos menos uno se divide por dos, se suma el número de términos que preceden, se multiplica el resultado por la diferencia, y al producto se le suma el primer elemento de la progresión. Si los términos a sumar son ap+1, ap+2, ..., ap+m, el “número de términos que preceden” es p, el elemento central se calcula como sigue: También explica como calcular el número total de términos cuando se conoce el primero, la suma de todos ellos y la diferencia de la progresión: Multiplica la suma por ocho veces la diferencia, suma el cuadrado de la distancia entre el doble del primer miembro y la diferencia, haz la raíz cuadrada, resta dos veces el primer término, divide el resultado por la diferencia, suma uno y divide por dos. En efecto, por lo que se ha visto antes, la suma de todos los elementos de la progresión es (porque ahora m = n y p = 0): El número n es solución de la ecuación cuadrática: dn2 + (2a1 - d)n - 2S = 0 Resolviéndola, tenemos la regla de Aryabhata: La trigonometría del Aryabhatiya La trigonometría griega trabajaba con las cuerdas de los arcos. La idea del seno, la semicuerda del ángulo doble, es de origen hindú. En el Aryabhatiya se da una tabla de los senos de 24 ángulos, cada uno de los cuales excede al anterior en (3 + 3/4)º. Pero no se utilizaba, como se hace hoy, una circunferencia de radio uno, de manera que su concepto de seno no es idéntico al nuestro, de manera que si R es el radio de la circunferencia, el seno hindú de un ángulo es el seno actual multiplicado por R. Aryabhata toma como unidad de longitud el minuto de arco. Como da al número  el valor de 3.1416, el radio es: La longitud del radio es aproximadamente 3438 veces la del arco de un minuto. Como valor del seno del ángulo más pequeño de su tabla toma 225, la longitud del arco. El error cometido es insignificante: Para el cálculo de los demás senos, se sirve de la siguiente fórmula (en la cual α = (3 + 3/4)º): De este modo: Y así va completando su tabla. Bibliografía DICKSON, L. E. (1971), History of de theory of numbers, Chelsea Publishing company, New York. GERICKE, H. (1984), Mathematik in Antike Orient, Springer-Verlag, Berlín. GHEVERGHESE, G. (1996), La cresta del pavo real, Ediciones Pirámide, Madrid. MORENO, R. (2011), Aryabhata, Brahmagupta y Bhaskara, tres matemáticos de la India, Editorial Nivola, Madrid. ORE, O.  (1988), Number Theory and its History, Dover Publications, New York. VAN DER WAERDEN, B. L. (1983), Geometry and Algebra in Ancient Civilizations, Springer-Verlag, Berlín.
Sábado, 21 de Julio de 2012 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Carlos Sánchez Fernández y Rita Roldán Inguanzo (Universidad de La Habana)
Christian Goldbach nace el 18 de marzo de 1690 en el seno de la familia del profesor de Historia y Retórica Bartolomeus Goldbach de la Universidad de Königsberg. El primer maestro de Goldbach fue su padre, quien sin dudas ejerció una notable influencia en la amplitud de intereses culturales que durante toda su vida mostró Christian. Poco sabemos de los años escolares, pero a partir de los 19 años comenzó un diario que se conserva y ha sido estudiado. Su padre murió cuando Christian tenía 18 años de edad y su espíritu inquieto aún no había encontrado el camino cierto para su realización. El hermano mayor de Christian Goldbach estudiaba en la Universidad de Leipzig que era una de las más antiguas de Europa y tenía una reconocida fama. Goldbach también matricula en esta universidad para estar con su hermano mayor y en un ambiente intelectual que le apetece. En Leipzig contacta con Christian Wolff, confeso discípulo de Leibniz en Matemáticas y Filosofía Natural. Será Wolf quien le facilite su primer encuentro con Leibniz, cuando Goldbach acaba de cumplir 21, mientras Leibniz ya contaba con 65 años de edad. No obstante, Leibniz lo estimula a continuar con sus preocupaciones científicas, particularmente matemáticas. Aunque esta no fue la única vez que estos dos sabios se encontraron, la mayor parte de su relación se llevó a cabo por cartas, ya que Goldbach emprende un largo viaje por Europa. En el diario se observa que en la época de este peregrinaje, sus intereses siguen siendo, amplios, sin preferencias científicas o humanistas. En total Leibniz y Goldbach se escribieron 11 cartas, las últimas dedicadas a temas de la teoría matemática de la música y el movimiento de los planetas. La última carta fue escrita por Leibniz en 1713 y Goldbach no continúa la correspondencia a pesar de que Leibniz muere tres años más tarde. Quizás la razón de ello sea el temor a verse envuelto en la penosa polémica con Newton y la Royal Society, que podría obstaculizar su carrera profesional y sus íntimas aspiraciones que fueron estimuladas con el nombramiento el 3 de diciembre de 1714 como Consejero de Federico Guillermo I, Rey de la emergente y pronto poderosa Prusia. En sus prolongados viajes por Europa Goldbach conoció a tres de los miembros de la afamada familia matemática de los Bernoulli: Nicolaus I, sobrino de los hermanos Jacob y Johann, y a dos de los hijos de este último, Nicolaus II y Daniel. Con Nicolaus I se encontró en Londres, en 1712 y después en Padua e intercambiaron sobre los temas científicos de la época. En el primer encuentro, Nicolaus, Goldbach y también el matemático francés exiliado en Inglaterra, Abraham de Moivre, discutieron sobre problemas simples de los números enteros en particular sobre la posibilidad de solución en enteros de las ecuaciones. xp - 3 = 9n o xp - 6 = 9n.También Nicolaus obsequió a Goldbach la tesis desarrollada bajo la guía de su tío Jacob sobre sumas infinitas y su aplicación a la cuadratura de áreas y la rectificación de curvas, la cual en ese momento resultaba para él oscura y difícil de comprender. Así todo parece indicar que desde entonces se ven estimulados sus intereses por los dos temas principales de sus reflexiones matemáticas: las propiedades de los números enteros y las sumas infinitas. A Nicolaus II, Goldbach lo conoció en Venecia en1721. En este encuentro y en la intensa correspondencia que mantuvieron durante un año, hasta la prematura muerte de Nicolaus, discutieron sobre temas relacionados con el nuevo cálculo de los diferenciales. Fue Nicolaus II quien recomendó a Goldbach que escribiera a su hermano Daniel, quien se interesaba tanto por los temas teóricos de las Matemáticas, como por sus aplicaciones. El intercambio epistolar entre Goldbach y Daniel Bernoulli duró más de 8 años y consta de más de 70 cartas. Al principio eran frecuentes los temas de Teoría de Números, pero también intercambiaron ideas sobre diferentes variantes de la ecuación de Riccati, sobre el llamado juego o paradoja de San Petersburgo relacionado con el cálculo de probabilidades y sobre temas de integración de funciones irracionales y sumación de series. Tras un largo peregrinar por Europa que duró alrededor de 6 años, Goldbach regresa a Prusia en 1724, donde conoció personalmente al matemático Jacob Hermann, discípulo de Jacob Bernoulli, quien se aprestaba a viajar a San Petersburgo, para laborar en la recién creada Academia de Ciencias. Goldbach se entusiasmó con la idea y envió una carta al Presidente de la nueva Academia, preguntando por la posibilidad de contratación. Aunque, por ese entonces no tenía resultados científicos significativos, sí poseía experiencia como consejero del reino de Prusia, a lo que sumaba una vasta cultura adquirida en sus viajes y visitas a los más ilustres sabios de la época. Después de algunas negociaciones fue nombrado Secretario de la Academia, con la obligación de escribir las actas de las reuniones, preparar la edición de las obras y conservar los documentos que se precisaran para llevar la historia de la institución y, junto con el Bibliotecario, se ocuparía de la correspondencia entre los académicos y otros sabios de Europa. A las gestiones de Goldbach como Secretario de la Academia se debió la contratación de los hermanos Nicolaus y Daniel Bernoulli, el primero para la cátedra de Mecánica y el segundo para la de Fisiología. Al fallecer Nicolaus, Daniel pasó a la cátedra de Mecánica y propuso a su coterráneo y amigo Leonhard Euler para la plaza de Fisiología. Así conoció Goldbach a quien, a pesar de ser 17 años más joven, sería el mejor corresponsal y confidente de su elucubraciones matemáticas. La correspondencia entre Euler y Goldbach duró hasta poco antes de su fallecimiento y consta de casi 200 cartas sobre diferentes temas. En toda esta correspondencia se manifiesta la gran estima que Euler siempre profesó a las opiniones y consejos de Godbach, a quien escogió como padrino de su primogénito. Durante su estancia en San Petersburgo, Goldbach no solo realizó su trabajo como Secretario de la Academia de Ciencias, sino que pronto se vio inmerso en el torbellino de la alta política rusa de la época. Primero como preceptor del Zar Pedro II, sobrino de Pedro I (el Grande), que contaba con solo 10 años, después como consejero de la emperatriz Anna Ivanovna, también sobrina de Pedro I. Esta labor como consejero de los zares la continuó desarrollando aún cuando retornó a ocuparse de los asuntos de la Academia de Ciencias. Un mérito extraordinario de Goldbach es haber conseguido mantenerse dentro de los confidentes en la corte rusa mientras se sucedieron una tras otras las purgas administrativas y políticas. Cierto es que Goldbach poseía una cultura exquisita, además del alemán dominaba el latín y el francés, y entendía algo de ruso, además de poseer un amplio círculo de amigos influyentes y un indiscutible tacto diplomático. Desde 1742 es aceptado en el colegio de asuntos extranjeros con el rango de Consejero de Estado, realizando funciones que hoy denominaríamos como criptógrafo oficial. Muestra del respeto y el prestigio ganado sea que se le asignó uno de los aposentos del Palacio de Invierno, residencia de los zares rusos, y allí lo encontró la muerte el 1 de diciembre de 1764. El legado matemático de Goldbach Por supuesto que si comparamos los aportes matemáticos de Goldbach con los de cualquiera de los grandes sabios de la primera mitad de este siglo, resultan insignificantes. Pero si valoramos con justicia y objetividad sus influencias en el desarrollo de la comprensión de la naturaleza íntima de las matemáticas puras, sus estímulos al desarrollo de las investigaciones a través de sus contactos personales, de su correspondencia, de sus discursos en la Academia; y no centramos el análisis en sus pocas publicaciones originales o en la ausencia de premios obtenidos, sin dudas puede afirmarse que Christian Goldbach fue uno de los más influyentes sabios del siglo XVIII. Su nombre ha quedado prendado en una conjetura de la teoría de números que aún reclama resolución, pero sus más originales ideas son del campo de las sumas infinitas. En una carta a su amigo Daniel Bernoulli en 1723, Goldbach cuenta cómo comenzó su interés en el tema de la sumación de series. El primo de Daniel, Nicolaus I Bernoulli, le obsequió la tesis que había desarrollado con su tío Jacob sobre el tema de las sumas infinitas. Pero, la tesis de Nicolaus era la quinta y última de las que asesoró Jacob Bernoulli y Goldbach todavía desconocía las cuatro anteriores, por tanto, su ignorancia no le permitió inmediatamente apreciar el arte de calcular que subyacía en la tesis, y la dejó a un lado. Cinco años después lee un artículo de Leibniz “Sobre una relación exacta del círculo con un cuadrado inscrito expresada en números racionales” donde aparecen dos resultados sorprendentes relacionados con sumas infinitas: Una cuadratura aritmética del círculo:1 . Una cuadratura aritmética de la hipérbola: . El atractivo de estos resultados lo decidió a aprender lo necesario para apreciar mejor el arte del cálculo. Así Goldbach se dio a la tarea de indagar más sobre las series a través de los trabajos de algunos de sus contemporáneos, muy especialmente en las tesis dirigidas por Jacob Bernoulli. Así aparece la primera publicación de Goldbach en 1720, unas notas con algunas recetas ingenuas para expresar las sumas parciales de una serie, de forma que la estimación de su suma total fuera más expedita. Pero en sus publicaciones Goldbach no hizo ningún aporte prominente al arte de la sumación de series, ni en este primer artículo ni en los dos siguientes que se publicarían en 1729 y 1732. Sus ideas más originales y fructíferas las expuso en su correspondencia con Daniel Bernoulli y, principalmente, con Leonhard Euler. Era como si Goldbach poseyera un talento especial para componer agraciadas melodías de forma tal que sus brillantes corresponsales se sintieran estimulados a elaborarlas y presentarlas en muy diversas variantes. Fué Goldbach quién motivó a Euler para que se interesara por el famoso problema de Basilea: hallar la suma de la serie . Christian Golbach elaboró un original método de aproximación que lo llevó a estimar el valor de S entre 1,64 y 1,66, envió sus ideas por carta a Euler con el reto de mejorarlo. Dos años más tarde Euler hizo pública una asombrosa aproximación de 6 cifras decimales exactas: 1,643934. Y como es sabido, mas tarde encontró el valor exacto en función de la cuadratura del círculo unidad. Otro ejemplo de la fructífera relación con Euler ha quedado rubricado con el único teorema que enlaza sus nombres y también se refiere a las sumas infinitas. Goldbach conocía una forma de probar la igualdad y desafió a Euler para que encontrara otra demostración más precisa y concisa. En un extenso y maduro trabajo sobre series, Euler publica la demostración de este hecho y según él mismo reconoce, es la misma demostración que Goldbach le comunicó. Este es el resultado que actualmente se conoce como Teorema de Goldbach-Euler. La ingenuidad de Goldbach en el tratamiento de las sumas infinitas está acorde con el estilo fresco y artificioso de la época dorada del arte de sumación. Pero las ideas rudimentarias de Goldbach, corregidas, aumentadas y mejor expresadas por Euler, se pueden considerar como germen de lo que en la encrucijada de los siglos XIX y XX se conformaría como “Teoría de los algoritmos de sumación”. La verdad histórica sobre la enunciación de la conjetura de Goldbach En 1742 Euler se había trasladado a Berlín y Goldbach le escribe a su amigo sobre nuevas proposiciones que ha concebido relacionadas con los números primos: […] quisiera aventurar una conjetura: todo número que esté formado por dos números primos es una suma de tantos números primos como se desee (contando entre ellos a las unidades), hasta alcanzar solo unidades. Pero su especulación no se detiene allí. Al leer lo ya escrito reconoce que pudiera mejorar su conjetura y escribe al margen: [...] Al volver a leer esto encuentro que esta conjetura se pudiera demostrar con sumo rigor en el caso n+1, si se cumple en el caso n y n+1 se divide en dos números primos. La demostración es muy sencilla. Parece ser al menos que todo número de ese tipo que sea mayor que 1 es suma de tres números primos. En esencia, Goldbach indica cómo demostrar, mediante el método que hoy denominamos de inducción matemática, la siguiente tesis: Si un número se puede representar como suma de dos números primos, entonces también se puede representar como suma de tres números primos. Luego, el problema se reduce a determinar cuáles números se pueden representar como suma de dos números primos. Euler envía como respuesta a Goldbach la consideración siguiente: Que un número que sea resoluble en dos números primos, se puede descomponer a la vez en tantos números primos como se quiera, puede ser ilustrado y confirmado a partir de una observación que su excelencia me había comunicado anteriormente, que todo número par es una suma de dos números primos. Puesto que el número propuesto n es par, entonces n es una suma de dos números primos y como n-2 también es una suma de dos números primos, entonces n es una suma de tres, y también de cuatro, etc. Si n es un número impar entonces él es una suma de tres números primos, porque n-1 es una suma de dos y por tanto se puede resolver varias partes. Entonces Euler añade: Pero el que todo número par sea una suma de dos primos lo considero un teorema, a pesar de que no puedo demostrarlo… Sin dudas Euler aplicó su gran ingenio para tratar de demostrar lo que el considera un teorema: Todo número par mayor que 2 puede ser escrito al menos de una forma como suma de dos números primos. Pero ni la perspicacia de Euler ni la de todos los matemáticos que por más de 260 años han dedicado sus esfuerzos a la prueba o refutación de esta afirmación han tenido éxito. Esta conjetura se conoce en la actualidad con el nombre de Conjetura Binaria o Fuerte de Goldbach. A partir de la veracidad de la Conjetura Fuerte de Goldbach, resulta sencillo deducir la llamada Conjetura Débil o Ternaria de Goldbach que se acerca más a lo planteado por Goldbach en su carta a Euler y se expresa en la forma actual: Todo número impar mayor que 5 puede ser escrito al menos de una forma como suma de tres números primos. La demostración de esta afirmación a partir de la validez de la Conjetura Fuerte de Goldbach es muy sencilla, pues si n es un número impar mayor que 3, entonces se cumple que n=3+m, al considerar a m un número par mayor que 2, el cual, a su vez, según la Conjetura Fuerte de Goldbach, es la suma de dos números primos m=p+q. Luego, n=3+p+q. Aunque la Conjetura Débil de Goldbach se deduce directamente de la Conjetura Fuerte, también se han dedicado grandes esfuerzos a demostrarla directamente. En los años 30 del siglo pasado se avanzó considerablemente en el acercamiento a una demostración al probarse que existe un número entero bien determinado C de modo que todo número natural n puede ser escrito como suma de no más de C números primos, es decir, n=p1+p2+...+pm, tales que pi es primo (i=1,...,m)  y m ≤ C. Más adelante se logró probar que C ≤ 300000. La cota para esta constante C se ha logrado disminuir de forma sucesiva, así en los años 70 se logra probar que C ≤ 169 y, en esa misma década, se reduce sucesivamente hasta obtener que C ≤ 26. La mejor cota superior encontrada hasta el momento es 6. Sin dudas, con esto nos vamos acercando a la conjetura de Goldbach. Con el avance vertiginoso de la computación es de esperar que la brecha entre los valores comprobados de la conjetura y los aún dudosos se continúe reduciendo. La gran dificultad no consiste en el desarrollo de algoritmos eficientes para la determinación de las descomposiciones de un número dado en suma de dos números primos, sino, precisamente, en la poca eficiencia que tienen las pruebas para determinar cuando un número es primo. Como el propio Christian Goldbach reconociera, “aquellas proposiciones que son muy probables aunque falte una verdadera demostración” son sumamente útiles, “pues aún cuando se descubra que son incorrectas, pueden conducir al descubrimiento de una nueva verdad”. Bibliografía De las biografías de Goldbach, la que consideramos más completa es la de los historiadores rusos A. P. Yushkevich; Y. J. Kopelievich (1994) Christian Goldbach. 1690-1764. Aus dem Russischen übersetzt von Annerose und Walter Purkert. Vita Mathematica. 8. Basel: Birkhäuser. Por supuesto, recomendamos la más reciente publicada en castellano que hemos utilizado como sustento de esta síntesis C. Sánchez y R. Roldán (2009) Goldbach. Una Conjetura Indomable. Ed. Nivola. Madrid. Una interesante lectura en el maravilloso mundo de los problemas abiertos de la teoría de números y con su primer capítulo dedicado a la conjetura de Goldbach es Guy, R. K. (2004) “Unsolved Problems in Number Theory”, 3rd ed. New York: Springer Verlag. La correspondencia entre Goldbach y Euler constituye una lectura de gran interés que recomendamos fuertemente. Se puede consultar, por ejemplo, en http://www.informatik.uni-giessen.de/staff/richstein   Nota: 1 En la época se denominaba cuadratura de una curva al cálculo de algún área determinada por ella.
Miércoles, 20 de Enero de 2010 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Josep Pla i Carrera (Universitat de Barcelona)
1. Vida y obra del matemático chino Liu Hui Este texto está totalmente inspirado en la biografía de Liu Hui contenida en [Pla09b].1 1.1. Notas biográficas de Liu Hui. Antes de hacer la presentación concreta de sus aportaciones metodológicas, didácticas y técnicas, dedicaremos unas palabras a este matemático chino, mucho menos conocido que Euclides y del cual apenas se sabe nada. Ello, sin embargo, no debe extrañarnos, porque de Euclides y de Diofanto, por ejemplo, sabemos también poquísimo. Liu Hui [劉徽] vivió en el Reino de Wei, es decir en la parte central del norte de la China, en la provincia actual de Shanshi, en el siglo iii de nuestra era. Es por lo tanto contemporáneo de Diofanto de Alejandría. Tras el colapso de la dinastía Han, se crearon los “Tres Reinos”. Además del Reino de Wei, los generales Han crearon un reino al sur del Yangzi y otro en el oeste de la China, en la provincia actual de Szechwan. Liu Hui vivió en el período de los Tres Reinos de China. Vivió, pues, en un período de constante confrontación e intrigas políticas. Sin embargo, actualmente, este período se considera uno de los más románticos de la historia de China. Se desconoce completamente como influyeron todas estas circunstancias en la vida de Liu Hui. Lo que sí sabemos es que, en el año 260, escribió un texto breve, Haidao suanjing [Manual Matemático de la Isla del Mar] y probablemente, en el 263, un comentario extraordinariamente notable del Jiuzhang suanshu [que hoy conocemos como Nueve Capítulos de la Arte Matemática china]. De hecho, lo único que sabemos realmente es que lo escribió “en el cuarto año del reino Jingyuan del príncipe Chenliu de los Wei”2. El hecho de conocer el autor de estos dos tratados es importante porque, con anterioridad al siglo tercero de nuestra era, la mayoría de los textos de matemática china que se han conservado son anónimos. Atendiendo a los estudios cada vez más detallados y especializados de la matemática oriental, realizados durante la segunda mitad del siglo XX, conviene matizar las palabras de Dirk J. Struik: No hubo nadie en la matemática oriental de la antigüedad que intentara hallar lo que actualmente conocemos como una demostración. No se da nunca una argumentación, sólo se prescriben ciertas reglas. Esto es todo3. Y, más aún, debemos afirmar con rotundidad que esta percepción es errónea. En China, por ejemplo, debemos considerar a Liu Hui como la figura de un matemático que procuró ofrecer presentaciones razonadas de las reglas del Jiuzhang suanshu4. Algunas de sus contribuciones o comentarios a los capítulos del Jiuzhang suanshu las detallaremos más adelante5. Además, en la Introducción, nos ofrece una nota histórica importante: En el pasado, el tirano Qin [∼221–207]6 mandó quemar los libros. Ello comportó la destrucción del conocimiento clásico [chino]. Después [entre 260 aC–150 aC], Zhang Cang [?–152 aC], marqués de Bei Ping y el ministro de agricultura y finanzas, Geng Shouchang [siglo I aC] fueron famosos por su gran talento para efectuar cálculos. Y, puesto que los textos antiguos habían sido destruídos, Zhang Cang y su equipo, trabajando con los restos incompletos de los textos, los reconstruyeron completando las partes que se habían perdido. La consecuencia fue que los textos que obtuvieron, comparándolos con los de los antiguos y atendiendo a los títulos, tenían diferencias notables con aquellos que pretendían reconstruir y estaban escritos en una terminología mucho más moderna7. Ahora, dedicaremos las dos secciones siguientes al análisis breve, pero suficiente, del Haidao suanjing, original de Liu Hui, y al Jiuzhang suanshu. 1.2. Liu Hui y el Haidao suanjing. Es una obra breve que consta solamente de nueve problemas. Lo escribió originalmente como parte de sus comentarios al Jiuzhang suanshu, pero, con posterioridad, fue desgajado del resto y presentado como un texto independiente8. Se trata, de hecho, de un texto sobre el teorema Gougu [teorema de Pitágoras]. Pero, a diferencia del uso que, de él, se hace en el capítulo noveno del Jiuzhang suanshu, aquí su utiliza para medir alturas y distancias de objetos que no pueden ser medidos directamente. De hecho son problemas que hoy consideraríamos como problemas de trigonometría, en los cuales hay que determinar el lado de un triángulo rectángulo recurriendo a la relación entre otras medidas preestablecidas, o quizás más simplemente a la semejanza de triángulos o teorema de Tales. Se pretende determinar la altura y la distancia de una isla en el mar, de una torre, o de un árbol situados en la cima de un cerro, o la distancia a la que nos hallamos de una ciudad cuadrada, la profundidad de una garganta de la naturaleza, la anchura de un río, la profundidad de un valle con un lago en la parte inferior, la anchura de una fortaleza en la cima de un montículo, y las medidas de una ciudad que observamos desde lo alto de un cerro. Para ver lo que, en realidad, se hace en el texto nada mejor que analizar alguno de sus problemas. Sólo analizaremos el primero, que trata de la altura y distancia de una isla en el mar —y que da nombre al libro9. Problema 1. Se trata de una isla en el mar. Clavamos en el suelo dos palos de la misma altura, 3 zhang, que se hallan separados entre si 100 bu. Se hallan alineados con la cima más alta de la isla. Si nos retiramos 123 bu del palo más próximo a la isla, vemos que el extremo superior de dicho palo y la cima más alta de la isla están en línea recta. Si nos retiramos 127 bu del palo más alejado de la isla, vemos que el extremo superior de dicho palo y la cima más alta de la isla están en línea recta. Díme: ¿Cuál es la altura de la isla y la distancia que la separa del palo más próximo? Respuesta. La altura de la isla es de 4 li 55 bu, y se halla a 102 li 150 bu del palo más próximo. La isla del mar Método de resolución. Multiplica la distancia que separa los palos [en la figura d := P1P2 = 1000 bu] por la altura de los palos [que es de 3 zhang]. Divide este producto por la diferencia que hay entre los palos y el respectivo punto de intersección [en la figura δ := P2Y − P1X = 127 − 123 bu]. Suma a este cociente la altura del palo y tendrás la altura de la isla. Para hallar la distancia de la isla al palo más próximo, multiplica la distancia entre los dos palos [en la figura d := P1P2] por la distancia que te has desplazado del primer palo [en la figura e1 := P1X], y divídelo por [δ], la diferencia de las distancias movidas10. 1.3. Una síntesis breve del Jiuzhang suanshu. Todo el saber de la matemática china precedente a la época de Liu Hui se recoge en el Jiuzhang suanshu, y él, como veíamos en la sección anterior, añade un décimo capítulo que data del año 260 dC11. Nadie duda de este hecho, que podemos sintetizar con las primeras palabras de la Introducción de la traducción inglesa: El Nueve Capítulos de la Arte Matemática juega, en la matemática oriental, un papel análogo al que, en la occidental, ha jugado el Elementos de Euclides. Sin embargo, el Nueve Capítulos se preocupa siempre muchísimo más de la determinación de algoritmos que resuelvan los problemas. Por ello, su influencia ha sido pedagógica y de aplicación práctica. En vez de los teoremas que los lectores occidentales están acostumbrados a encontrar en las obras escritas en la tradición euclídea, el Nueve Capítulos proporciona reglas algorítmicas12.[... ] Es imposible entender el desarrollo de la matemática china, desde sus inicios hasta nuestros días, sin efectuar un estudio substancial de los contenidos del Jiuzhang suanshu13. Las palabras que acabamos de citar son un reflejo de un convencimiento que han defendido los estudiosos de la matemática china, como refleja la opinión de Ougura Kinnosuke: El Nueve Capítulos de la Arte Matemática es la obra fundamental de las matemáticas chinas. Contiene métodos matemáticos excelentes. Si se compara con las matemáticas griegas, es inferior en todo lo que se refiere a la geometría y la teoría de números; en cambio, por lo que a la aritmética y el álgebra (anterior a Diofanto —de aproximadamente el 275 de nuestra era) se refiere, estoy convencido de que las sobrepasan14. Y para ejemplificarlo, Kinnosuke se refiere a la resolución de los sistemas de ecuaciones lineales. Es interesante, además, fijarse en la distinción que establece, en el texto citado, entre la aritmética y la teoría de números. En cierto modo, corresponde a la distinción griega entre logística y aritmética. Aquella estudiaría el uso concreto de los números naturales —su representación y algoritmos de cálculo—; ésta, más teorizante, se preocuparía de establecer las propiedades de los números enteros positivos. A tenor de las palabras que acabamos de leer parece razonable hacer una presentación, aunque sea somera, del Jiuzhang suanshu puesto que constituye el tronco de la matemática china. Sin embargo, conviene indicar, como ya apuntábamos en el preámbulo, que el objetivo de este pequeño texto de matemática china no consiste en un estudio detallado y pormenorizado de este insigne texto sino que pretende ser —y así se presenta— un análisis más amplio de la matemática china, exponiendo las cuestiones y resultados más notables obtenidos por los matemáticos chinos antes de la llegada de Ricci15. De entre todos los textos que componen los Shibu suanjing de los Tang, el Jiuzhang suanshu es el mejor de todos. En él hallamos los rasgos específicos de las matemáticas chinas. Constituye, como indica el texto citado, el arquetipo —el texto paradigmático— de las obras matemáticas chinas. Es, pues, el momento de examinarlo de más de cerca. El Jiuzhang suanshu contiene 246 problemas que se distribuyen de acuerdo con la taxonomía siguiente. Problemas relativos a: Campos rectangulares, 38. Mijo y arroz sin cáscara, 46. Repartos proporcionales según el rango, 20. Disminución de la longitud, 24. Discusiones de los trabajos públicos, 28. Taxación equitativa, 28. Excesos y déficits, 20. Comparación de disposiciones, 18. Base-altura, 24. El texto de Ogura Kinnosuke, que hemos citado, analiza el Jiuzhang suanshu como un documento sobre la sociedad y clasifica su contenido de acuerdo con las siguientes rúbricas: terrenos y trabajos agrícolas, trabajos públicos, intercambios de grano y de alimentos, artesanía, precio de las mercancías, intereses, transporte e impuestos, tarifas aduaneras, anécdotas relativas a los burócratas, etc. Esta taxonomía recuerda —oh, eco lejano!— las palabras del papiro Rhind [∼1800 aC]: Estudio completo y profundo de todas las cosas, penetración de todo lo que existe, penetración de todos los secretos...16 Sin embargo, este estudio completo y profundo, como ya hemos indicado, se expone en base a problemas que podríamos considerar “problemas concreto”, del quehacer cotiano, aún cuando esto sería un error. Los problemas se hallan estructurados como el del texto de Liu Hui, Haidao suanjing que hemos indicado con anterioridad: enunciado, solución, cálculo, sin ninguna explicación razonada de dicho cálculo. Es natutal que los matemáticos se hicieran las siguientes preguntas: El por qué del algorismo? Su validez es general o, en cambio, es sólo es aceptable en dicho caso particular? Cabe un método general, justificable desde algún tipo de raciocinio? Tales son, de hecho, las preguntas que se plantearon los matemáticos chinos, en general, y también Liu Hui. Lo que hace de este insigne erudito es la cantidad de algorismos, razones, generalizaciones, explicaciones que da a cada uno de los problemas, como podemos constatar en las ediciones ingles y francesa del Nueve Capítulos, citados a lo largo del texto y en la bibliografía. 1.4. Citas del propio Liu Hui. Para terminar esta presentación de Liu Hui y de su obra, recordemos que los entendidos afirman que fue un gran matemático que, además, tenía un conocimiento muy profundo y rico de la lengua y del lenguaje chinos. Así pues, a pesar de la falta total de información acerca de la vida de Liu Hui, como ya hemos indicado en la §1.1, su obra nos dice algo de él porque él mismo, en sus reflexiones, abre la puerta para que le conozcamos mejor. En la introducción de sus comentarios al Jiuzhang suanshu, dice: [... ] Además las matemáticas forman parte de las seis artes. Nuestros antepasados las usaban para seleccionar las personas que tenían talento, para instruir a los hijos de los altos dignatarios [del reino]. A pesar de que se denominen “las nueve partes de la matemática”, proporcionan la capacidad de alcanzar lo sutil y de penetrar lo ínfimo, explorando sus límites. Por lo que a la transmisión de sus métodos se refiere, se pueden establecer conocimientos comunes, con el uso de la regla, el compás, los números y las medidas. No hay nada que sea extremadamente difícil. En la actualidad, sin embargo, los que aprecian estas cuestiones son pocos y ello se debe a que, aunque las personas con un grado amplio y profundo de cultura son muchas, no está claro que sean capaces de alcanzar los distintos puntos de vista y de penetrarlos17. Una doble reflexión —que no puede dejarnos indiferentes y que además nos es familiar. Si bien son fáciles, se pueden asimilar porque gozan de metodologías comunes fácilmente asimilables. Sin embargo, de hecho, no consiguen despertar el interés de las personas con cultura, quizás porque no tiene capacidad para “penetrarlas”. Y, por encima de todo, es un matemático que, si bien en el pasaje anterior, nos puede haber parecido algo engreído por el hecho de atribuirse unas capacidades —indudablemente las tenía— que no todas las personas cultas alcanzan, también es capaz de mostrarnos su humildad cuando un problema se escapa a su comprensión: [... ] Desearía, con mis pingües conocimientos, aplicarme a resolver este problema, pero me parece de carezco del principio exacto para ello. No osaría, en absoluto, tratarlo a la ligera. Esperaré a que alguien logre hablar de él con conocimeinto y verdad18. Con esta presentación quedan claros, creo, tanto el contenido del Jiuzhang suanshu, la originalidad y enjundia del texto de Liu, Haidao suanjing y su propia valía como matemático. Notas: 1 El lector interesado en este matemático puede consultar http://turnbull.mcs.st-and.ac.uk/history/Biographies/Liu Hui.html, o bien, [PY08], y la bibliografía que, en ellos, se propone. 2 Véase [Kan99, pág. 3], o [Che44, pág. 57]. 3 Véase [Str67, pág. 30]. 4 Véanse los comentarios de Liu Hui al Jiuzhang suanshu en [Kan99], o en [Che44]. 5 Véase [Pla09a] o, más extenso, [Pla09b]. 6 En referencia al primer emperador de la dinastía Qin. 7 Véase [Kan99, pág. 53], o [Che44, pág. 127]. 8 Actualmente disponemos de excelentes traducciones al inglés, con comentarios y notas, cuales son [Swe92], y [Kan99, págs. 518–559]. 9 El lector interesado en profundizar más en este texto puede consultar [Pla09b, págs. 84–91], y para la totalidad del texto, puede ver [Swe92]. 10 Véase [Swe92, pág. 20], o [Kan99, págs. 539; 541–543]. Para las expresiones relativas a las medidas que usa el texto, véase [Pla09b, pág. 69]. 11 Comentaristas posteriores a Liu Hui mantendrán este nuevo capítulo en sus comentarios. 12 Se hallan enumeradas en [Kan99, pág. 595]. En total, entre aritméticos, algebraicos y geométricos, se contabilizan 83. 13 Véase [Kan99, pág. vii]. 14 Véase [Kin35, vol. 1, págs. 189–207]. 15 Véase, para ello, [Kan99], [Che44], o [Pla09b, págs. 21–25]. 16 Véase [Pla07], o [Cla99, pág. 122]. 17 Véase [Kan99, pág. 53], o [Che44, pág. 127]. 18 Véase [Kan99, pág. 229], o [Che44, pág. 381]. Esta reflexión tiene lugar cuando intenta justificar la expresión del volumen de la esfera, de la que hablaremos. Véase [Pla09b, págs. 151–156] Referencias: [Che44] Karine Chemla, Les Neuf Chaptres. La Classique mathématique de la Chine ancienne et ses commentaires, Dunod, París, 2044, los autores son: Karine Chemla y Guo Shuchun. [Cla99] Marshall Clagett, Ancient Egyptian Science. A Source Book. Volume Three. Ancient Egyptyan Mathematics, American Philosophical Society, Filadel a, 1999. [Gil90] Charles Coulston Gillispie, Complete dictionary of scientific biography, Charles Scribner's Sons, Nova York, 1970-1990. [Kan99] Shen Kangshen, The Nine Chapters on the mathematical Art: Companion and Commentary, Oxford University Press, Science Press, Beijing, 1999, los autores son: Shen Kangsheng, John N. Crossley, Anthony W.-C. Lun. [Kin35] Ogura Kinnosuke, El aspecto social de las matemáticas chinas; la sociedad de los qin y de los han vista a través de los Nueve Capítulos de la arte matemática (en japonés), Iwanami shoten, Tókyo, 1935, en Sûgakushi kenkyü (Investigaciones acerca de la historia de las matemáticas). [Pla07] Josep Pla, Les matemàtiques egípcies, Barcelona, 2007, Curso de matemáticas egipcias. Museu Egipci de Barcelona. Fundació Clos. Barcelona, febrero­abril 2007. Pendiente de publicación. [Pla09a] Josep Pla, “Matemáticas: Unidad de pensamiento. Diversidad cultural”, La Gaceta de la Real Academia Matemática española 12 (1) (2009), págs. 169–189. [Pla09b] Josep Pla, Liu Hui. Nueve Capítulos de la matemática china, Nivola, Madrid, 2009. [PY08] Hang Peng-Yoke, Liu Hui, [Gil90], vol. 8, Charles Scribner’s Sons, 2008, pp. pàgines 418–425. [Str67] Dirk J. Struik, A Concise History of Mathematics, Dover Publications, Inc., Nueva York, 1967, reeditado por Dover Publications, Inc. Nueva York, 1967. [Swe92] Frank Swetz, The Sea Island Mathematical Manual; Surveying and Mathematics in Ancient China, Pensilvania State University Press, Pensilvania, USA, 1992.
Jueves, 26 de Noviembre de 2009 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Vicente Meavilla Seguí (Universidad de Zaragoza)
1. Algunos datos biográficos y científicos 1499-1500. Nicolás Fontana nació en Brescia (Italia). 1512. Durante la toma de Brescia por el ejército francés, al mando de  Gaston de Foix, murió el padre de Nicolás y éste recibió una cuchillada que le afectó la mandíbula y el paladar. Esta herida le ocasionó una especie de tartamudez, que le valió el apodo de “Tartaglia” [= tartamudo]. Nicolás aprendió a leer y a escribir por sí mismo y también fue autodidacta en su aprendizaje de las ciencias físicas y matemáticas. 1516-1518. Se trasladó a Verona donde enseñó Matemáticas. 1534. Se instaló en Venecia donde impartió clases de Matemáticas en la escuela parroquial de San Zanipolo y se relacionó con los artilleros venecianos. 1535. Tartaglia fue retado por Antonio María Fior, discípulo de Scipione del Ferro (1465-1526), a un torneo matemático en el que cada contendiente debía resolver treinta problemas propuestos por su adversario. Nicolás presentó una colección de cuestiones variadas sobre aritmética, geometría y álgebra. Por su parte, Antonio María propuso una serie de problemas con un denominador común: todos se podían resolver mediante una ecuación cúbica del tipo x3 + px = q  (p > 0 , q > 0). El perdedor  se comprometía a pagar una comida para un número de comensales igual al de cuestiones resueltas por el ganador. Tartaglia resolvió los treinta problemas y ganó el desafío. 1537. Se publicó el tratado Nova scientia inventa (Venecia) consagrado a la balística. En él, Tartaglia sostuvo que la trayectoria de un proyectil lanzado por un cañón se componía de tres tramos: el primero,  rectilíneo e inclinado; el segundo, curvilíneo [= un arco de circunferencia]; el tercero, rectilíneo y vertical. 1539. Gerónimo Cardano (1501-1576), famoso médico, astrólogo, filósofo y matemático, residente en Milán, se enteró del descubrimiento de Tartaglia relativo a la ecuación x3 + px = q, y quiso incluirlo en su obra Practica Arithmetica Generalis que estaba terminando. Gerónimo Cardano Cardano propuso al librero Zuan Antonio da Bassano, amigo de ambos, que visitase a Tartaglia para que le facilitase el método de resolución. Este encuentro tuvo lugar el 2 de enero y la respuesta de Tartaglia fue negativa. Gerónimo le escribió una carta, fechada el 12 de febrero, en la que reiteró su petición. Tartaglia permaneció firme en su decisión de no comunicar su fórmula. El 13 de marzo Cardano le remitió una nueva carta en la que le invitaba a su casa de Milán, prometiendo que le pondría en contacto con Alfonso de Ávalos, gobernador del Milanesado. Tartaglia aceptó con la esperanza de  presentar al gobernador sus recientes investigaciones en el campo de la artillería.  La reunión se celebró el 25 de marzo de 1539. En esta ocasión, Gerónimo logró su objetivo y Tartaglia le reveló sus métodos para resolver las  cúbicas x3 + px = q , x3 + q = px , x3 = px + q  (p > 0 , q > 0). Para ello, se sirvió de unos tercetos de los que hablaremos más adelante. Tercetos de tercer grado Cardano juró por los Santos Evangelios que no haría públicos los descubrimientos de Nicolás. 1542. Cardano y su discípulo Ludovico Ferrari (1522-1565) viajaron a Bolonia y obtuvieron permiso de Aníbal de la Nave, yerno de Scipione del Ferro, para consultar los documentos científicos que éste había heredado de su suegro. Entre ellos encontraron la resolución de la ecuación x3 + px = q que precedía a la de Tartaglia en veinte años. Esta fue la regla que, tres años más tarde, Cardano incluyó en su Artis Magnae, Sive de Regulis Algebraicis [= Ars Magna]. 1545. Se imprimió el Ars Magna. En el capítulo XI de esta obra [Cubo y primera potencia iguales a número], se ofrece la resolución de la cúbica x3 + px = q y se  atribuye la paternidad de la regla a Scipione del Ferro de Bolonia. No obstante, Cardano señala que, en su disputa con Antonio María Fior, Tartaglia la (re)descubrió. La publicación de “su fórmula”  hizo que Tartaglia se sintiese traicionado por Cardano que, según Nicolás, había incumplido su sagrado juramento y obrado de mala fe. 1546. Se editaron las Quesiti et inventioni diverse, escritas en forma de diálogo y dedicadas a la ingeniería y al arte militar. En esta obra Tartaglia rectificó la teoría propuesta en Nova scientia inventa y  consideró que la trayectoria de un proyectil lanzado por un cañón es totalmente curvilínea. Además, en este tratado aparece la versión de Tartaglia sobre su polémica con Cardano. Se reproducen las cartas intercambiadas y las conversaciones que mantuvieron. Tartaglia anima a Cardano a que desmienta lo que sea falso. Cardano no respondió a tal invitación. 1547. El 10 de febrero Tartaglia recibió respuesta a sus quejas por parte de Ludovico Ferrari. Se inició así una sucesión de réplicas y contrarréplicas, los famosos cartelli y risposti. Ferrari escribió seis y Tartaglia otros seis. En el último de ellos, fechado el 24 de julio de 1548, Tartaglia aceptaba las condiciones de un duelo matemático con Ferrari que empezó y acabó el 10 de agosto de 1548 con la victoria del discípulo de Cardano. 1551. Se publicó La travagliata inventione (Venecia), manual en el que se tratan asuntos tan diversos como la recuperación de barcos hundidos, la predicción del tiempo, etc. 1556. Se editaron las dos primeras partes  del General trattato de numeri et misure, dividido en seis. Las cuatro siguientes se publicaron en 1560 y la sexta fue escrita por un “docto matemático” que utilizó material del “tartamudo” de Brescia. La primera parte del General trattato es un extenso tratado de aritmética práctica en el que se exponen profusamente las cuatro operaciones aritméticas elementales. La segunda se dedica a la aritmética teórica e incluye el estudio de las potencias y la extracción de raíces cuadradas y cúbicas. En una de sus páginas, Tartaglia ofrece algunas noticias acerca de la resolución de las ecuaciones cúbicas y sobre su controversia con Cardano. Mención especial merece el cálculo de las once primeras potencias de un binomio en el que interviene el “triángulo aritmético” o “triángulo de Tartaglia”. La tercera parte se consagra a la geometría práctica y la cuarta a la geometría especulativa. En la quinta se estudia la geometría desde una óptica constructiva, primero en el plano y después en el espacio. Para construir la perpendicular a una recta desde uno de sus puntos, Tartaglia utiliza un procedimiento que ya fue utilizado por el matemático árabe Abu’l Wafa (940-998). Perpendicular a una recta desde uno de sus puntos (Método de Abu’l Wafa) Sea B un punto de la recta dada r. Trácese una circunferencia de centro arbitrario C que pase por B. Sea A el otro punto de intersección de dicha circunferencia con la recta r. Dibújese  la recta que pasa por A y C. Sea D el punto de intersección de dicha recta con la circunferencia. En esta situación, la recta BD es perpendicular a r por el punto B. La sexta parte se consagra al álgebra, pero su contenido no va más allá de las ecuaciones de segundo grado. A la parte teórica sigue una colección de problemas mercantiles y geométricos resolubles por ecuaciones lineales o cuadráticas. Portada de la primera parte del General trattato di numeri et misure (Venecia, 1556) General trattato de numeri …, Primera parte, fol. 25v. Multiplicación “por cuadrilátero” y “por gelosía” 1557. Nicolás Fontana murió en Venecia el 13 de diciembre. 2. El álgebra sincopada de Tartaglia En sus investigaciones de carácter algebraico, los matemáticos del Renacimiento italiano no utilizaron un simbolismo como el actual. Para representar la incógnita, sus potencias y los signos de las operaciones elementales hicieron uso de algunos caracteres [los caracteres cósicos] y abreviaturas. Para ilustrar el lenguaje del que se sirvió Tartaglia en sus trabajos algebraicos presentamos dos textos (uno de Quesiti et inventioni diverse y otro que se incluye en la respuesta de Nicolás al segundo cartello de Ludovico Ferrari. TEXTO 1 Problema propuesto por el Maestro Antonio Veronese a Tartaglia (16 de septiembre de 1527) M.A. Una figura rómbica, cuyos lados miden 10 pies, tiene un área de 72 pies superficiales. Pregunto, ¿Cuál es la razón del diámetro [diagonal] mayor al diámetro [diagonal] menor? N. No me parece un problema muy difícil, dado que, dividiendo el rombo en dos triángulos, cada uno de ellos tendrá un área de 36. Para saber cuál es la base de cada uno pongo que dicha base es una cosa. Luego, calculo la perpendicular [altura] y encuentro que es igual a R. universal de 100 men. 1/4 de censo. De modo similar calculo el área, que es igual a R. universal de 25 censos men. 1/16 de censo de censo. Esto debe ser igual a 36. Elevo al cuadrado los dos términos y resulta 1296 igual a 25 censos men. 1/16 censo de censo. Quito los quebrados, restauro las partes y encuentro que el valor de la cosa es R. universal de 200 más [Tartaglia escribe piu] R. 19264. Esto será el diámetro mayor del rombo. El diámetro menor será R. V. 200 men. R. 19264. Quesiti et inventioni diverse, libro IX, quesito XIII COMENTARIO SIMBOLISMO DE TARTAGLIA SIMBOLISMO ACTUAL cosa x censo x2 censo de censo x4 piu + men. – R. √ R. universale  ó  R. V. √(...) Teniendo en cuenta la tabla anterior, los cálculos de Tartaglia se puede traducir del modo siguiente: TEXTO 2 Problema propuesto por Tartaglia en su respuesta al segundo cartello de Ludovico Ferrari Encuentro que 27 cu.cu más 36 primeros relatos más 54 segundos relatos más 8 cubos iguales  a 1000. Pregunto si esta ecuación (y otras similares) es resoluble por fórmula general y, en caso afirmativo, cuánto vale la cosa. COMENTARIO SIMBOLISMO DE TARTAGLIA SIMBOLISMO ACTUAL cubo x3 primo relato x5 segundo relato x7 cu. cu x9 La ecuación presentada por Tartaglia se convierte en: 27x9 + 36x5 + 54x7 + 8x3 = 1000, si se atiende a la información contenida en el cuadro anterior. 3. La resolución algebraica de la ecuación cúbica: tragicomedia en cuatro actos Primer acto: los dos problemas de Zuanne de Tonini da Coi Si atendemos al testimonio de Tartaglia, contenido en el diálogo mantenido con Zuanne de Tonini da Coi (Quesiti et inventioni diverse, libro IX, quesito XIV), en 1530 o antes Nicolás ya conocía una regla general para la resolución de la cúbica x3 + px2 = q  (p, q  > 0). Sin embargo, por aquel entonces Tartaglia desconocía el procedimiento para resolver cúbicas del tipo x3 = px + q. QUESITO XIV que me fue propuesta en Verona por el Maestro Zuanne de Tonini da Coi, que tiene una escuela en Brescia, y me la hizo llegar Messer Antonio de Cellica el año 1530 MAESTRO ZUANNE. Encuentra un número tal que multiplicado por su raíz [cuadrada] más 3 sea igual a 5. De forma similar, encuentra tres números tales que el segundo sea igual al primero aumentado en 2, el tercero sea igual al segundo aumentado en 2, y cuyo producto sea 100. N. M. Zuanne, me has mandado estos dos problemas como cuestiones imposibles de resolver o desconocidas por ti; porque procediendo por Álgebra, el primero conduce a 1. cubo más 3 censos iguales a 5 [x3 + 3x2 = 5] y el segundo a 1. cubo más 6 censos más 8 cosas iguales a 1000 [x3 + 6x2 + 8x = 1000, siendo x el número menor. Notemos que si se toma como incógnita el número mediano, se llega a la ecuación x3 = 4x + 1000]. Según F. Luca [Pacioli] y otros, estas ecuaciones son irresolubles por regla general. Tú crees que con estos problemas puedes superarme y aparentar que eres un gran matemático. He oído que haces lo mismo con todos los profesores de esta ciencia de Brescia, los cuales, por temor a estas cuestiones, no se atreven a hablar contigo y quizás saben más de esta ciencia que tú (…) M.Z. Entiendo lo que me has escrito y que consideras tales casos como imposibles (…) N. Yo no digo que dichos casos sean imposibles. De hecho, para el primer caso, el de cubo y censos iguales a número, estoy convencido de que he encontrado la regla general, pero por ahora quiero guardarla en secreto por varios motivos. Para el segundo, el de cubo y censos y cosas iguales a número, confieso que no he sido capaz de encontrar la regla general. Con esto no quiero decir que sea imposible encontrarla aunque hasta ahora no haya sido encontrada. No obstante, me apuesto diez ducados contra cinco a que no eres capaz de resolver con regla general ninguna de las dos cuestiones que me has propuesto. Deberías avergonzarte de proponer a otros algo que tu no entiendes, pero que finges entender, para aparentar que eres alguien importante. Segundo  acto: El desafío entre Antonio María Fior y Nicolás Tartaglia Parece ser que la primera persona que resolvió algebraicamente la ecuación de tercer grado x3 + px = q (p > 0, q > 0)  fue Scipione del Ferro, profesor de la Universidad de Bolonia. Según Tartaglia (Quesiti et inventione diversi, libro IX, quesito XXV) lo hizo en 1506 y según Cardano (Ars Magna, capítulo XI) en 1515. Scipione nunca publicó su solución pero la dio a conocer a un reducido grupo de amigos entre los que se encontraba su discípulo Antonio María Fior. El año 1535, Tartaglia fue retado por Antonio María a un torneo matemático en el que cada contendiente debía resolver treinta problemas propuestos por su adversario. Nicolás presentó una colección de cuestiones sobre aritmética, geometría y álgebra (sólo han llegado hasta nosotros cuatro de ellas). Por su parte, Fior propuso una serie de problemas que se podían resolver mediante una cúbica del tipo x3 + px = q  (p > 0 , q > 0) Tartaglia resolvió los treinta problemas y ganó el desafío. Algunos problemas propuestos por Tartaglia La primera cuestión, de las 30 que le propuse [a Antonio María Fior], si no recuerdo mal, decía: Encuentra una cantidad irracional que multiplicada por su raíz [cuadrada] más 40 haga un número racional y discreto [x(√x+ 40) = a]. La segunda: Encuentra una cantidad irracional que multiplicada por 30 menos la raíz [cuadrada] de dicha cantidad haga un número racional y discreto [x(30 – √x) = a]. La tercera: Encuentra una cantidad que sumada al cuádruplo de su raíz cúbica haga 13 [x3 + 4x = 13]. La cuarta: Encuentra una cantidad tal que restándole su raíz cúbica resulte 10 [x3 = x + 10]. Quesiti et inventioni diverse, libro IX, quesito XXV     Los treinta problemas propuestos por Antonio María Fior 1. Encuentra un número que sumado a  su raíz cúbica sea igual a 6 [x3 + x = 6]. 2. Encuentra dos números en proporción dupla tales que si se multiplica el cuadrado del mayor por el menor, y este producto se suma a los dos números buscados, entonces el resultado es 40 [(2x)2·x + 2x + x = 40 ó 4x3 + 3x = 40]. 3. Encuentra un número tal que si se cubica, y este cubo se suma al número, entonces resulta 5 [x3 + x = 5]. 4. Encuentra tres números en proporción tripla tales que si se multiplica el cuadrado del menor por el mayor, y este producto se suma al número mediano, entonces el resultado es 7 [x2·9x + 3x = 7 ó 9x3 + 3x = 7]. 5. Dos socios hacen compañía con un capital común de 900 ducados  Si uno aporta la raíz cúbica de lo que aporta el otro, ¿cuánto aporta cada socio? [x3 + x = 900]. 6. Dos hombres ganan 100 ducados y quieren repartírselos de forma que uno reciba la raíz cúbica del otro. Pregunto, ¿cuánto le corresponde a cada uno? [x3 + x = 100]. 7. Encuentra un número que sumado al doble de su raíz cúbica sea igual a 13. [x3 + 2x = 13] 8. Encuentra un número que sumado al triple de su raíz cúbica sea igual a 15. [x3 + 3x = 15] 9. Encuentra un número que sumado al cuádruplo de su raíz cúbica sea igual a 17. [x3 + 4x = 17] 10. Divide el número 14 en dos partes de modo que una sea la raíz cúbica de la otra [x3 + x = 14]. 11. Divide el número 20  en dos partes de modo que una sea la raíz cúbica de la otra [x3 + x = 20] 12. Un joyero vende dos joyas por 1900 ducados, un diamante y un rubí. El rubí se vende por la raíz cúbica del precio del diamante. ¿Cuánto vale el rubí? [x3 + x = 1900] 13. Un prestamista deja a una persona una cantidad de dinero con la condición de que al cabo del año le debe dar de interés la raíz cúbica del  capital. Al cabo del año el prestamista recibe entre capital e intereses 800 ducados. ¿Cuál fue el capital prestado? [x3 + x = 800]. 14. Haz de 13 dos partes tales que el producto de las dos sea igual al cuadrado de la parte menor multiplicada por sí misma [x3 + x = 13] 15. Un hombre vende un zafiro por 500 ducados obteniendo un beneficio igual a la raíz cúbica de su capital. ¿Cuál es este beneficio? [x3 + x = 500] Los problemas siguientes (16-30) se refieren a la división de un número en dos partes tales que una es la raíz cúbica de la otra. Quesiti et inventioni diverse, libro IX, quesito XXXI     Tercer acto: Tercetos de tercer grado Gerónimo Cardano se enteró del descubrimiento de Tartaglia relativo a la resolución de la cúbica x3 + px = q, y quiso incluirlo en su obra Practica Arithmetica Generalis que estaba a punto de terminar. Cardano propuso al librero Zuan Antonio da Bassano, amigo de ambos, que visitase a Tartaglia con la esperanza de que le facilitase la regla general. Este encuentro tuvo lugar el 2 de enero de 1539 (Quesiti et inventioni diverse, libro IX, quesito XXXI). Tartaglia respondió en los siguientes términos: Decidle a su excelencia que cuando quiera publicar mis descubrimientos lo haré en alguna de mis obras y no en las de otros. Ante esta negativa, el emisario, siguiendo instrucciones de Cardano, solicitó a Nicolás que le facilitase las treinta cuestiones que le había propuesto Fior junto con sus resoluciones. Tartaglia accedió a la primera petición pero no a la segunda, dado que: Una vez que él [Cardano] tuviese uno de dichos problemas con su solución entendería rápidamente la regla que he descubierto con la que podría encontrar muchas otras reglas relativas a tal materia. Esta nueva negativa no desanimó a Zuan Antonio que, de inmediato, presentó a Tartaglia los siete problemas siguientes con la intención de que le facilitase sus métodos de resolución. Divide el número 10 en cuatro partes en continua proporción [en progresión geométrica] de modo que la primera sea igual a 2. Divide el número 10 en cuatro partes en continua proporción de modo que la segunda sea igual a 2. Encuentra cuatro números en continua proporción de modo que el primero sea 2 y la suma del segundo y el cuarto sea igual a 10. Encuentra cuatro números en continua proporción de modo que el primero sea 2 y la suma del tercero y el cuarto sea igual a 10. Encuentra cuatro números en continua proporción de modo que el segundo sea 2 y la suma del primero y el cuarto sea igual a 10. Haz de 10 tres partes en continua proporción de modo que el producto de la primera por la segunda sea 8. Encuentra un número que multiplicado por su raíz [cuadrada] más 3 haga 21. Nicolás no cayó en la trampa y, por consiguiente, no resolvió los problemas. Así acabó la entrevista entre Zuan Antonio da Bassano y Tartaglia. El 12 de febrero Cardano escribió una carta a Tartaglia en la que reiteraba su petición, pero éste permaneció firme en su decisión de no comunicar su fórmula aunque accedió a resolver dos problemas propuestos por Cardano.   El primer problema Haz de 10 cuatro partes en proporción continua, de modo que la suma de sus cuadrados sea 60. Quesiti et inventioni diverse, libro IX, quesito XXXII     La resolución de Tartaglia Para resolver el problema anterior Tartaglia se sirvió de una interesante relación entre los cuatro primeros términos de una progresión geométrica. A saber: Si I, II, III, IV son los cuatro primeros términos de una progresión geométrica, entonces: Sean I, II, III, IV las partes buscadas y  x = II + III. Luego, I + IV = 10 – x. En esta situación, resulta que: A partir de aquí resulta que: Con esto, resulta fácil determinar las cuatro partes requeridas.   El 13 de marzo Cardano mandó una nueva carta a Tartaglia en la que le invitaba a su casa de Milán, prometiendo que le pondría en contacto con Alfonso de Ávalos, gobernador del Milanesado. Nicolás aceptó con la esperanza de  presentar al gobernador sus recientes investigaciones en el campo de la artillería.  La reunión se celebró el 25 de marzo de 1539. Esta vez Gerónimo logró su objetivo y Tartaglia le reveló sus métodos para resolver las  cúbicas (i) x3 + px = q , (ii) x3 + q = px , (iii) x3 = px + q  (p , q > 0). Para ello, se sirvió de unos tercetos que se han hecho famosos en la historia de las Matemáticas. Cardano juró por los Santos Evangelios que no haría públicos los descubrimientos de Nicolás. Presentamos la adaptación al castellano de los tres primeros tercetos [regla para la ecuación del tipo (i)] y su traducción al simbolismo algebraico moderno. Cuando el cubo y las cosas juntas [x3 + px] Se igualan a cualquier número discreto: [x3 + px = q] Se buscan otros dos que difieran en él. [u – v = q] Luego, tendrás por costumbre Que su producto sea siempre igual Al cubo de la tercera parte de las cosas conocidas. [uv = (p/3)3] Como regla general, lo que queda De la diferencia de sus raíces cúbicas Será igual a tu cosa principal. [x = ] Desconocemos la forma en que Tartaglia descubrió esta regla, pero bien pudo ser del modo siguiente. Se sabe que: De donde: Entonces: Si se compara la identidad anterior con la ecuación x3 + px = q que se quiere resolver, resulta que: En consecuencia, la regla de Tartaglia es correcta. Sólo queda obtener la expresión de x en función de p y q. Entonces, dado que la ecuación x3 + px = q tiene una única solución real positiva, se tiene que: Por tanto: Dicha expresión se conoce como fórmula de Tartaglia-Cardano. Cuarto acto: la controversia Tartaglia-Cardano-Ferrari Durante el intervalo comprendido entre marzo de 1539 hasta  1545, Nicolás y Gerónimo se dedicaron principalmente a traducir a Euclides y Arquímedes (Tartaglia) y a preparar la edición de Artis Magnae Sive de Regulis Algebraicis (Cardano). OPERA ARCHIMEDIS SYRACVSANI PHILOSOPHI ET MATEMATICI INGENIOSISSIMI per Nicolaum Tartaleam Brixianum En 1542, atendiendo al testimonio de Ludovico Ferrari (Cartello II), Cardano y Ferrari se desplazaron a Bolonia para visitar a Aníbal de la Nave, yerno de Scipione del Ferro. Allí consultaron los documentos que Aníbal había heredado de su suegro y encontraron la resolución de la ecuación x3 + px = q debida a Scipione. Este procedimiento era anterior al de Tartaglia en unos veinte años y fue el que, según Ferrari, Cardano incluyó en su Ars Magna (Nuremberg, 1545). En el capítulo XI de dicha obra, Gerónimo se expresaba en los siguientes términos: Scipione del Ferro, de Bolonia, hace treinta años que descubrió esta regla y la comunicó a Antonio María Fior de Venecia, cuyo desafío con Nicolás Tartaglia de Brescia dio a Nicolás la oportunidad de descubrirla. Él me la dio sin la  demostración. Con esta ayuda busqué la demostración de varias formas. Fue muy difícil. Mi versión es la siguiente. Ante este hecho Tartaglia consideró que Cardano había faltado a su juramento y le acusó, entre otras cosas, de traidor. Cardano no contestó a las provocaciones de Tartaglia, pero el 10 de febrero de 1547 su discípulo Ferrari retó a Nicolás a un desafío público sobre Geometría, Aritmética y todas las disciplinas que de ellas dependen como Astrología, Música, Cosmografía, Perspectiva, Arquitectura y otras. Para ello utilizó un panfleto de cuatro  páginas de contenido y cuatro páginas de nombres de matemáticos y personajes ilustres  (cincuenta en total, entre los que figuraba Aníbal de la Nave) de varias ciudades italianas (Roma, Venecia, Milán, Florencia, Ferrara, Bolonia, Salerno, Padua, Pavía, Pisa y Verona) a los que mandó copia  del documento. Ferrari proponía una garantía de 200 escudos y un plazo de treinta días para que Tartaglia diese respuesta a su escrito. Nicolás respondió a Ludovico nueve días después. Seis páginas con las firmas de tres testigos y una postdata en la que comunicaba que había hecho mil copias de su escrito para distribuirlas por  toda Italia. En su respuesta, Tartaglia ponía de manifiesto que no quería enfrentarse a él, sino a su maestro. Se iniciaba así una acalorada disputa a lo largo de la cual se sucedieron seis cartelli y seis risposti ordenados cronológicamente en el cuadro siguiente: CARTELES (FERRARI) RESPUESTAS (TARTAGLIA) Primer cartel, 10 de febrero de 1547 Primera respuesta, 19 de febrero de 1547 Segundo cartel, 1 de abril de 1547 Segunda respuesta, 21 de abril de 1547 Tercer cartel, 1 de junio de 1547 Tercera respuesta, 9 de julio de 1547 Cuarto cartel, 10 de agosto de 1547 Cuarta respuesta, 30 de agosto de 1547 Quinto cartel, octubre de 1547 Quinta respuesta, 16 de junio de 1548 Sexto cartel, 14 de julio de 1548 Sexta respuesta, 24 de julio de 154 En su segundo cartel de once páginas escritas en latín, Ferrari comentaba el descubrimiento de la regla para la cúbica x3 + px = q  por Scipione del Ferro. En su segunda respuesta, Tartaglia proclamaba que había descubierto dicha regla de forma autónoma, aunque no descartaba la posibilidad de que otros la hubiesen podido encontrar con anterioridad o que algunos pudieran descubrirla más adelante de forma independiente. Defendiéndose de las acusaciones de haber plagiado la obra de Jordanus de Nemore, Nicolás se expresaba así: A esto respondo que, en este caso, basta con que consideréis que hice las demostraciones, y las demostraciones (como debéis saber) son de mayor consideración, doctrina, ciencia y  dificultad que las proposiciones. Porque cualquier proposición matemática sin su demostración no tiene ningún valor para los matemáticos. Proponer algo es fácil. Cualquier ignorante puede formar una proposición, pero no es capaz de demostrarla. IORDANI OPVSCVLVM DE PONDEROSITATE NICOLAI TARTALEAE STVDIO CORRECTVM Dado que Tartaglia defendía como formato del duelo una lista de cuestiones que debían ser resueltas en un tiempo determinado, al final de su segunda respuesta propuso una colección de treinta y un problemas.   Uno de los  problemas de Tartaglia 21. En la obra titulada “Divina Proporción” se enseña la forma de calcular el volumen de diversos tipos de cuerpos. Me encuentro un cuerpo de 62 caras circunscrito a una esfera. De las 62 caras, 12 son pentágonos equiláteros y equiángulos, 30 son cuadrados y 20 son triángulos equiláteros. Si el lado de cada cara es igual a 4, demando cuál es el volumen del cuerpo. El cuerpo al que se refiere Nicolás es el poliedro arquimediano representado en la figura adjunta, conocido con el nombre de rombicosidodecaedro.   Ferrari respondió en su tercer cartel con treinta y un problemas más.   Uno de los problemas de Ferrari 17. Divide el número 8 en dos partes de modo que su producto multiplicado por su diferencia sea lo mayor posible, demostrando cada paso. Nicolás los resolvió (tercera respuesta) y se creyó vencedor.   Una respuesta de Tartaglia En vuestra decimoséptima cuestión me preguntáis que divida 8 en dos partes tales que el producto de una por la otra multiplicado por su diferencia sea lo mayor posible. Respondo que la parte mayor es 4+ y la menor es 4–. Su producto es 10, que multiplicado por su diferencia, que es , hace . En el quinto cartel, Ferrari respondió a las cuestiones de Tartaglia y declaró que sólo cinco de las respuestas de Nicolás eran correctas. Por fin, en su sexta respuesta, Tartaglia aceptó el desafío público. Éste tuvo lugar en Milán el 10 de agosto de 1548. En un ambiente muy hostil, en palabras de Nicolás, se desarrolló la primera sesión del duelo a la que no acudió Cardano. Esta hostilidad fue la causa de que Tartaglia, creyendo que su integridad física estaba en peligro, no asistiese a la sesión del día siguiente y, por consiguiente, perdiera el desafío. De este modo concluía uno de los episodios más bochornosos de la historia del álgebra. 4. Tartaglia y la matemática recreativa Para acabar esta breve biografía del “tartamudo” de Brescia, presentamos dos recreaciones matemáticas contenidas en el General trattato de numeri et misure. Blancas y negras, turcos y cristianos General trattaro…Primera parte, libro 16,art. 203, fols. 264v-265r (…) Se quieren colocar 30 fichas sobre un tablero, 15 blancas y 15 negras, de modo que ordenándolas y contando adecuadamente se quiten todas las negras sin quitar ninguna blanca. De otro modo: en una barca hay 15 cristianos y 15 turcos. Como hay exceso de carga, el número de tripulantes se debe reducir a la mitad. Se trata de colocarlos de modo que, contándolos  adecuadamente, se queden todos los cristianos y salgan los turcos. Pregunto, ¿cómo debe hacerse? Para obtener la solución del problema, Tartaglia recurre, entre otras, a la siguiente regla mnemotécnica: En el verso Ecce amata federe amaram fecere araneam meam asigna a la vocales a, e, i, o , u los valores 1, 2, 3, 4 y 5, respectivamente. Entonces, la sucesión de vocales ee aaa eee aaa eee aaea ea, obtenida a partir del verso, se transforma en la sucesión numérica 22 111 222 111 222 1121 21 que admite la siguiente traducción. CCTTCTCTTCCTTCTCTTCCTTCTCCTCCT siendo C [= cristiano] y T [= turco]. Contando de izquierda a derecha y de tres en tres, se consigue eliminar a todos los turcos sin que se elimine a cristiano alguno. Un problema de trasvases General trattato... Primera parte, libro 16, art. 133, fol. 255v El problema propuesto por Tartaglia, cuyo enunciado no es “políticamente correcto”, equivale al siguiente: Una vasija llena contiene 8 onzas de bálsamo. ¿Cómo pueden dividirse las 8 onzas en dos partes iguales utilizando dos vasijas de 3 y 5 onzas, respectivamente? Esquematizamos la solución de Nicolás en el cuadro siguiente: VASIJA DE 8 VASIJA DE 3 VASIJA DE 5 Inicio 8 0 0 5 0 3 2 3 3 2 1 5 7 1 0 7 0 1 4 3 1 Final 4 0 4 Referencias bibliográficas BABINI, J. y REY PASTOR, J. (1985). Historia de la Matemática. Barcelona: Gedisa, S.A. CARDANO, G. (1993). Ars Magna or the rules of Algebra (Translated by T. Richard Witmer). New York: Dover. FAUVEL, J. & GRAY, J. (1987). The History of Mathematics: A  Reader. London: MacMillan Education  in association with The Open University. GIORDANI, E. (1876). I sei cartelli di matematica disfida. Milano: R. Stabilimento  litografico di Luigi Ronchi e Tipografia degl’ Ingegneri. LORIA, G. (1982). Storia delle matematiche dall’alba della civiltà al tramonto del secolo XIX. Milán: Cisalpino-Goliardica. MARTÍN CASALDERREY, F. (2000). Cardano y Tartaglia. Las matemáticas en el Renacimiento italiano. Madrid: Nívola libros y ediciones, S. L. MEAVILLA SEGUÍ, V. (2005). La historia de las Matemáticas como recurso didáctico: ideas, sugerencias y materiales para la clase. Federación Española de Sociedades de Profesores de Matemáticas (FESPM). NORDGAARD, M. A. (1938). Sidelights on the Cardan-Tartaglia controversy. National Mathematics Magazine, Vol. 12, No. 7, pp. 327-346. STRUIK, D. J. (1986). A Source Book in Mathematics, 1200-1800. Princeton: Princeton University Press. VAN DER WAENDER, L. B. (1985). A history of Algebra. From al-Khwarismi to Emmy Noether. Berlín: Springer-Verlag. Referencias on-line Base cinque. Appunti di matematica ricreativa http://utenti.quipo.it/base5/ General trattato de numeri et misure http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?url=/mpiwg/online/permanent/library/H5BAMGAN/pageimg&pn=9&ws=1.5&mode=imagepath http://echo.mpiwg-berlin.mpg.de/ECHOdocuView/ECHOzogiLib?mode=imagepath&url=/mpiwg/online/permanent/library/Q9B15RYG/pageimg Quesiti et inventioni diverse (1554) http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi?dir=tarta_quesi_042_la_1554;step=thumb SINGMASTER, D.  Sources in recreational mathematics an annotated bibliography http://www.gotham-corp.com/sources.htm#_Toc69533865 Travagliata inventione http://mathematica.sns.it/volume.asp?Id=31
Martes, 16 de Junio de 2009 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Vicente Meavilla Seguí (Universidad de Zaragoza)
1. Algunos datos biográficos y científicos 1501. Gerónimo Cardano [= Hieronimus Cardanus = Girolamo Cardano] nació en Pavía (Italia) el 24 de septiembre. Fue hijo ilegítimo del abogado Fazio Cardano, que le inició en el estudio de las matemáticas y le permitió que estudiase medicina en la Universidad de Pavía. De allí pasó a la Universidad de Padua donde completó su formación. Por aquel entonces, Cardanus era un empedernido jugador de cartas y dados cuyos conocimientos sobre probabilidad le permitían vivir del juego. 1525. Se doctoró en medicina y solicitó su ingreso en el Colegio de Médicos de Milán. Al descubrirse que era hijo bastardo las puertas de la institución se le cerraron. 1539. Después de varias tentativas, Hieronimus fue admitido en el Colegio de Médicos de Milán. Este mismo año, Girolamo se enteró del descubrimiento de Tartaglia relativo a la resolución de la cúbica x3 + px = q, y quiso incluirlo en su obra Practica Arithmetice, & Mensurandi singularis (Milán, 1539) que estaba terminando. Practica Arithmetice es un tratado en el que, a lo largo de sesenta y ocho capítulos, se desarrollan contenidos elementales de aritmética, álgebra y geometría. Un problema de álgebra Divide 10 en dos partes tales que la diferencia de sus cuadrados sea 40. Sea 1 co. [= x] una de las partes. La otra parte es 10.m.1 co [= 10 – x]. Los cuadrados de las partes son 1 ce. [= x2] y 100. p. 1 ce. m. 20 co. [ = 100 + x2 – 20x]. Su diferencia es 40, por tanto 1 ce. p. 40. es igual a 1 ce. p. 100. m. 20 co. [x2 + 40 = x2 + 100 – 20x]. Entonces, 60 es igual a 20 co. [20x = 60] . Por tanto la cosa vale 3 [x = 3] y la otra parte 7 (…) Practica Arithmetice, cap. 65, probl. 29 Un problema de geometría práctica En este problema se calcula la profundidad de un pozo utilizando el instrumento llamado cuadrante y haciendo uso de la teoría de semejanza de triángulos. Este tipo de cuestiones solían formar parte de la mayoría de manuales renacentistas. Practica Arithmetice, cap. 67, probl. 1 Cardano propuso al librero Zuan Antonio da Bassano, amigo de ambos, que visitase a Tartaglia para que le facilitase el método de resolución. Este encuentro tuvo lugar el 2 de enero y la respuesta de Tartaglia fue negativa. Gerónimo le escribió una carta, fechada el 12 de febrero, en la que reiteró su petición. Tartaglia permaneció firme en su decisión de no comunicar su fórmula. El 13 de marzo Cardanus le remitió una nueva carta en la que le invitaba a su casa de Milán, prometiendo que le pondría en contacto con Alfonso de Ávalos, gobernador del Milanesado. Tartaglia aceptó con la esperanza de  presentar al gobernador sus recientes investigaciones en el campo de la artillería.  La reunión se celebró el 25 de marzo de 1539. En esta ocasión, Hieronimus logró su objetivo y Tartaglia le reveló sus métodos para resolver las  cúbicas x3 + px = q , x3 + q = px , x3 = px + q  (p > 0 , q > 0) [VÉASE la biografía de Nicolás Fontana (“Tartaglia)]. Girolamo juró por los Santos Evangelios que no haría públicos los descubrimientos de Nicolás. 1542. Cardano y su discípulo Ludovico Ferrari (1522-1565) viajaron a Bolonia y obtuvieron permiso de Aníbal de la Nave, yerno de Scipione del Ferro, para consultar los documentos científicos que éste había heredado de su suegro. Entre ellos encontraron la resolución de la ecuación x3 + px = q que precedía a la de Tartaglia en veinte años. Esta fue la regla que, tres años más tarde, Gerónimo incluyó en su Artis Magnae, Sive de Regulis Algebraicis [= Ars Magna]. 1545. Cardanus publicó su obra matemática más importante, Ars Magna, el primer gran tratado en latín dedicado exclusivamente al álgebra. En él se exponen los métodos de resolución de las ecuaciones de tercer y cuarto grado, se realizan cálculos con números complejos y se presenta un método para la resolución aproximada de ecuaciones de cualquier grado. Ars Magna De subtilitate 1550. Se editó De subtilitate, enciclopedia consagrada a la filosofía natural. 1564. Se publicó el Liber de ludo aleae considerado como el primer estudio sobre la teoría de probabilidad. 1570. Hieronimus fue encarcelado por hereje, dado que escribió el horóscopo de Cristo en su De astrorum iudiciis (1554) Se editó Opus novum de proportionibus numerorum en la que aparece el “triángulo aritmético” o “triángulo de Tartaglia”. 1571. Girolamo publicó su autobiografía, De vita propia. En ella leemos: Tan pocas cosas llamativas hay en mi fisonomía, que muchos pintores venidos de tierras lejanas para retratarme no hallaron en mí ningún rasgo cuya presencia en mi retrato bastara por sí sola para que me reconocieran. 1576. Cardano murió en Roma el 21 de septiembre de 1576. Se cree que se suicidó para no contradecir una previsión astrológica sobre la fecha de su muerte. 2. El álgebra del Ars Magna La cúbica x3 + px = q En el Ars Magna, Hieronimus hace un estudio exhaustivo sobre la resolución de la ecuación de tercer grado con una incógnita (véase el cuadro adjunto). ARS MAGNA CAPÍTULO TIPO DE ECUACIÓN DENOMINACIÓN XI x3 + px= q Cubo y primera potencia iguales a número XII x3 = px + q Cubo igual a primera potencia y número XIII x3 + q = px Cubo y números iguales a primera potencia XIV x3 = px2 + q Cubo igual a cuadrados y número XV x3 + px2 = q Cubo y cuadrados iguales a número XVI x3 + q = px2 Cubo y número iguales a cuadrados XVII x3 + px2 + qx = r Cubo, cuadrados y primeras potencias iguales a número XVIII x3 + qx = px2 + r Cubo y primeras potencias iguales a cuadrados y número XIX x3 + px2 = qx + r Cubo y cuadrados iguales a primeras potencias y número XX x3 = px2 + qx + r Cubo igual a cuadrados, primeras potencias y número XXI x3 + r = px2 + qx Cubo y número iguales a cuadrados y primeras potencias XXII x3 + qx + r = px2 Cubo, primeras potencias y número iguales a cuadrados XXIII x3 + px2 + r = qx Cubo, cuadrados y número iguales a primeras potencias En el capítulo once, Gerónimo ofrece su procedimiento de resolución para la cúbica x3 + px = q. El método de Cardanus  se apoya en razonamientos geométricos que se inspiran en un diagrama tridimensional como el de la figura adjunta. La simple inspección del diagrama anterior pone de manifiesto que: u3 – v3 = (u – v)3 + 3(u – v)2v + 3(u – v)v2 => u3 – v3 = (u – v)3 + 3(u – v)[(u – v)v + v2] => u3 – v3 = (u – v)3 + 3(u – v)[uv – v2 + v2] => u3 – v3 = (u – v)3 + 3uv(u – v)                  [1] Comparando la identidad [1] con la ecuación propuesta, resulta que u – v = x, siempre que: u3 – v3 = q 3uv = p A partir de estas dos igualdades se deduce que: Por tanto: La cúbica x3 + px2 + qx = r El capítulo XVII (Cubo, cuadrados y primeras potencias iguales a número) del Artis Magnae, Sive de Regulis Algebraicis contiene la resolución de la ecuación x3 + 6x2 + 20x = 100 La estrategia utilizada por Cardano consiste en transformar la ecuación dada en otra equivalente sin término cuadrático. Para ello, Hieronimus se sirve del cambio de variable: x = y – (6/3) = y – 2 Advirtamos que para el caso general, ax3 + bx2 + cx = d, el cambio adecuado sería x = y – (b/ 3a). Con esto, la cúbica x3 + 6x2 + 20x = 100 se convierte en y3 + 8y = 124          [2], ecuación de tercer grado en la incógnita y que se puede resolver utilizando el procedimiento descrito en el capítulo XI. Una vez calculados los valores de y que satisfacen la ecuación [2], los valores de x se obtienen deshaciendo el cambio de variable. La ecuación de cuarto grado En el capítulo XXXIX, Girolamo ofrece la resolución de la ecuación de cuarto grado debida a su discípulo Ludovico Ferrari. Para describir el método de Ferrari, Gerónimo resuelve un problema propuesto por Zuanne de Tonini da Coi, cuya traducción al simbolismo algebraico moderno desemboca en la ecuación: x4 + 6x2 + 36 = 60x          [3] En primer lugar, Cardanus introduce la identidad (x2 + a + b)2 = (x2 + a)2 + 2x2b + 2ab + b2 [4] Acto seguido, sumando 6x2 a los dos miembros de [3], resulta que: x4 + 6x2 + 36 + 6x2 = 60x + 6x2 => (x2 + 6)2 = 60x + 6x2 [5] Si en la identidad [4] hacemos a = 6 se obtiene: (x2 + 6 + b)2 = (x2 + 6)2 + 2x2b + 12b + b2 En consecuencia, si sumamos  2x2b + 12b + b2 a los dos miembros de [5] se tiene que: (x2 + 6)2 + 2x2b + 12b + b2 = 60x + 6x2 + 2x2b + 12b + b2 => (x2 + 6 + b)2 = (6 + 2b)x2 + 60x + (b2 + 12b)          [6] El primer miembro de [6] es un cuadrado perfecto. El segundo miembro también lo será si la ecuación (6 + 2b)x2 + 60x + (b2 + 12b)= 0 tiene una raíz doble. Para ello su discriminante debe ser cero. Es decir: 602 – 4(6 + 2b)(b2 + 12b) = 0  =>  602 = 4(6 + 2b)(b2 + 12b)  => (6 + 2b)(b2 + 12b) = 302 =>  2b3 + 30b2 + 72b = 900  =>  b3 + 15b2 + 36b = 450 La última ecuación es de tercer grado en la incógnita b y se puede resolver por el método explicado en el capítulo XVII (Cubo, cuadrados y primeras potencias iguales a número) del Ars Magna. Una vez determinado el valor de b para el cual el segundo miembro de [6] es el cuadrado de un binomio, se puede extraer la raíz cuadrada de los dos miembros de [6] obteniéndose una ecuación de segundo grado en x. Por consiguiente, la ecuación x4 + 6x2 + 36 = 60x está resuelta. Resolución aproximada de ecuaciones En el capítulo XXX de su Ars Magna, Cardano ofrece una regla (regula aurea) para el cálculo aproximado de las raíces de una ecuación polinómica con coeficientes enteros. En primera instancia, Gerónimo describe verbalmente la regla y, acto seguido (sin justificación alguna), la aplica a las ecuaciones: x4 + 3x3 = 100  ,  x2 + 20 = 10x  ,  x3 = 6x + 20  y  x4 + 6x2 + 200 = 10x3 + 12x Presentamos la adaptación del texto de Cardanus concerniente al cálculo de una raíz aproximada de la ecuación x4 + 3x3 = 100. Sea la ecuación x4 + 3x3 = 100. Sea f(x) = x4 + 3x3. Si x = x1 = 2 [= primera aproximación], entonces f(x1) = f(2) = 40 [= primer producto]. Si x = x2 = 3 [= segunda aproximación], entonces f(x2) = f(3) = 162 [ = segundo producto]. Con esto: f(x2) – f(x1) = 162 – 40 = 122 [= diferencia mayor] 100 – f(x1) = 100 – 40= 60 [= primera diferencia] f(x2) – 100 = 162 – 100 = 62 [= segunda diferencia] Llegados a este punto, Hieronimus llama solución imperfecta de la ecuación propuesta a . Sustituyendo este valor numérico en el primer miembro de dicha ecuación se obtiene un valor aproximadamente igual a 85. Restando 85 de 162 [= segundo producto] se obtiene  77. Restando 152/61 de 3 [= segunda aproximación] queda 31/61. Multiplicando 31/61 por 62 [= segunda diferencia] se obtiene 1922/61. Dividiendo el producto obtenido por 77 resulta 1922/4697. Restando el cociente obtenido de 3 [= segunda aproximación] queda 12169/4697 = 2,5908…, que, según Gerónimo,  es una buena aproximación de la solución de la ecuación x4 + 3x3 = 100. Cardano concluye advirtiendo que si se repite el mismo proceso todavía se puede aproximar mejor el valor de la incógnita. 3. Cardano y la Matemática Recreativa El juego de los anillos chinos o Baguenaudier El juego de los anillos chinos, conocido también como baguenaudier, es un juego mecánico construido con un número determinado de  anillas del mismo tamaño montadas sobre una horquilla y ligadas entre sí por unos hilos (alambres, varillas, etc.), tal como se indica en la figura adjunta. El primer testimonio que existe en Europa sobre los anillos chinos se encuentra en el manuscrito De Viribus Quantitatis, escrito por Luca Pacioli (1445-1517) entre 1496 y 1508. Unos años más tarde, Cardano se ocupó  del baguenaudier en el libro XV de su obra De subtilitate (1550). Por este motivo, el rompecabezas chino también se conoce con el nombre de Anillos de Cardano. Trasvases Practica Arithmetice, cap. 65, probl. 33 El problema propuesto por Hieronimus se puede formular en los siguientes términos: Una vasija llena contiene 8 onzas de bálsamo. ¿Cómo pueden dividirse las 8 onzas en dos partes iguales utilizando dos vasijas de 3 y 5 onzas, respectivamente? En esencia, la solución de Girolamo es la que se muestra en el cuadro siguiente: Los maridos celosos Practica Arithmetice, cap. 66, probl. 73 Entre los problemas de traslados dificultosos, el de los maridos celosos fue tratado por Tartaglia, por  Claude Gaspar Bachet de Meziriac (1581-1638) y por otros autores. Tres hermosas mujeres estaban casadas con tres hombres jóvenes, guapos y galantes, pero también celosos. Un día, mientras daban un paseo, llegaron a la orilla de un río. Para cruzarlo disponían de un bote cuya capacidad máxima era para dos personas. ¿Cómo lograron cruzar el río, si ninguna mujer podía quedar en compañía de ningún hombre a menos que su marido estuviera presente? Cardano lo incluyó en su Practica Arithmetice y su resolución se esquematiza en el diagrama adjunto donde se designa por M1, M2 y M3 a cada uno de los maridos y por E1, E2 y E3 a sus respectivas esposas. Cuadrados mágicos Se llama cuadrado mágico de orden n a un cuadrado formado por n2 números naturales diferentes tales que los n números de cada fila, columna o diagonal, tienen la misma suma a la que se llama constante mágica del cuadrado. Un cuadrado mágico de orden n se llama normal si los números que lo forman son los n2 primeros números naturales. A lo largo de la historia los cuadrados mágicos han atraído a un gran número de matemáticos eminentes tales como Thabit ibn Qurra (s. IX), Michael Stifel (ca. 1486-1567), Pierre de Fermat (1601-1665) y Leonhard Euler (1707-1783). Gerónimo tampoco pudo sustraerse a esta atracción y, en el capítulo 42 de su Practica Arithmetice, presentó siete cuadrados mágicos normales asociados a algunos cuerpos celestes (Luna, Mercurio, Júpiter, Sol, Saturno, Venus y Marte). Las constantes mágicas de los cuadrados asociados a la Luna, Mercurio, Júpiter, Sol, Venus y Marte son, respectivamente, 15, 34, 260, 111, 369, 65 y 175. Hagamos notar que la primera fila del cuadrado mágico de Saturno debe ser 37, 78, 29, 70, 21, 62, 13, 54, 5. Practica Arithmetice,cap. 42 Referencias bibliográficas CARDANO, G. (1991). Mi vida. Madrid: Alianza Editorial. CARDANO, G. (1993). Ars Magna or the rules of Algebra (Translated by T. Richard Witmer). New York: Dover. GRINSTEAD, C. M. & SNELL, J. L. (1997). Introduction to Probability. American Mathematical Society. LORIA, G. (1982). Storia delle matematiche dall’alba della civiltà al tramonto del secolo XIX. Milán: Cisalpino-Goliardica. MARTÍN CASALDERREY, F. (2000). Cardano y Tartaglia. Las matemáticas en el Renacimiento italiano. Madrid: Nívola libros y ediciones, S. L. MEAVILLA SEGUÍ, V. (2005). La historia de las Matemáticas como recurso didáctico: ideas, sugerencias y materiales para la clase. Federación Española de Sociedades de Profesores de Matemáticas (FESPM). RODRÍGUEZ VIDAL, R. y RODRÍGUEZ RIGUAL, M. C. (1986). Cuentos y cuentas de los matemáticos. Barcelona: Editorial Reverté, S. A. STRUIK, D. J. (1986). A Source Book in Mathematics, 1200-1800. Princeton: Princeton University Press. VAN DER WAENDER, L. B. (1985). A history of Algebra. From al-Khwarismi to Emmy Noether. Berlín: Springer-Verlag. Referencias on-line De subtilitate http://nausikaa2.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.x.cgi?dir=carda_subti_016_la_1663&step=thumb Opus novum de proportionibus numerorum http://archimedes.mpiwg-berlin.mpg.de/cgi-bin/toc/toc.cgi?dir=carda_propo_015_la_1570;step=thumb Practica Arithmetice http://www.cervantesvirtual.com/servlet/SirveObras/03693958677926017654480/index.htm http://fondosdigitales.us.es/books/search/digitalbook_view?oid_page=2587
Miércoles, 10 de Junio de 2009 | Imprimir | PDF |  Correo electrónico
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Ricardo Moreno (Universidad Complutense de Madrid)
Abu-l-Wefa es un matemático del siglo X nacido en Buzjan en la región de Khorasan (en la actual Iran), miembro de la escuela de Bagdad, interesado por la trigonometría, autor de un comentario sobre el Álgebra de al-Jwarizmi y de una traducción del griego de la Aritmética de Diofanto. Pero sus obras más interesantes son un Libro sobre la aritmética necesaria a los escribas y mercaderes y una Astronomía. La Aritmética Lo más importante de la Aritmética de Abu-l-Wefa es que en ella está muy bien tratado el tema de las fracciones. Se distinguen dos tipos, las “expresables” y las “inexpresables” o “mudas”. Las primeras las clasifica en tres grupos: 1. Fundamentales: 2. Repetidas de las fundamentales: 3. Producto de las fundamentales:  Para la contabilidad y las finanzas, los habitantes del Próximo y Medio Oriente procuraban escribir todas las fracciones en función de las expresables. Abu-l-Wefa propuso algunas reglas para expresar de esta manera una fracción cualquiera, que solo podían ser aproximadas cuando la fracción era muda. Uno, quizás el más rudimentario, pero bastante usado por los escribas, consiste en sumar el mismo número al numerador y el denominador de la fracción:
Viernes, 05 de Diciembre de 2008 | Imprimir | PDF |  Correo electrónico | Leer más
Historia de las matemáticas/Biografías de matemáticos ilustres
Autor:Juan Jesús Barbarán Sánchez (IES "Almina" de Ceuta)
Bajo el nombre de Theano se esconde la primera mujer, de la que se tienen indicios históricos, que hizo aportaciones a las Matemáticas. Para situarla en el tiempo, hay que remontarse al siglo VI a.C., a la antigua Grecia, más concretamente al año 546, a Crotona, donde nació. Según Peter Gorman [2], Theano fue hija de Brontinus, del que sabemos que pertenecía al grupo religioso de los órficos (los cuales proponían una innovadora interpretación del ser humano, como compuesto de un cuerpo y un alma, un alma indestructible que sobrevive y recibe premios o castigos más allá de la muerte) que suponía un enfrentamiento a las tradiciones religiosas vigentes en ese momento en Grecia. Al igual que los órficos, los pitagóricos le debían muchas de sus creencias a la mitología egipcia, por lo que no parece extraño que Theano se convirtiese en una discípula de Pitágoras (572 - 497 a.C.) e ingresara en el grupo de los pitagóricos. Pasados unos años y debido a las especiales facultades de Theano, ésta pasó a ser profesora en la escuela de Crotona dirigida por Pitágoras, quien no hacía ningún tipo de discriminación sexista para pertenecer a la misma, cosa que no podemos decir de muchos y muy buenos matemáticos contemporáneos que vetaban de forma injusta a las mujeres y las relegaban a tareas domésticas. Prueba de lo anterior es que se pueden contabilizar hasta 16 mujeres que formaron parte de la comunidad pitagórica más antigua, entre las que podemos citar a Aristoclea. Según Gorman [2], Theano se casó con Pitágoras cuando éste ya era viejo, y tuvieron una hija llamada Damo así como un hijo llamado Telauges. No hay unanimidad al respecto, ya que hay otra corriente de historiadores que afirma que fueron padres de tres hijas (Damo, Myria y Arignote) y dos hijos.
Viernes, 05 de Diciembre de 2008 | Imprimir | PDF |  Correo electrónico | Leer más

<< Inicio < Anterior 1 2 3 4 5 6 7 8 Siguiente > Fin >>
Página 1 de 8

© Real Sociedad Matemática Española. Aviso legal. Desarrollo web