El sonido de un tambor

por

Vicente Miquel, Universidad de Valencia

1. Introducción.

En esta charla me voy a ocupar de un aspecto particular del sonido de un tambor que ha interesado de modo especial a los geómetras durante los últimos 35 años. Se puede dar la fecha de 1966 como el inicio del interés actual por el tema y, también, de la pregunta con que se suele designar:

¿Se puede oír la forma de un tambor?

Este es el título de un artículo de M. Kac de 1966. Es un título deliberadamente llamativo: se oye el sonido, no la forma. Sin embargo, la pregunta no debería extrañar a ningún aficionado a la música. En la página siguiente se encuentran las fotos de dos instrumentos musicales conocidos: un oboe y una flauta. Ciertamente, ningún aficionado a la música necesita verlos, le basta con oírlos para saber cual de los dos está sonando. Así es que la pregunta de Kac no es tan extraña: es razonable pensar que se pueda conocer la forma de un instrumento con solo oírlo. Aquí nos limitaremos a uno de los instrumentos más sencillos: el tambor, un trozo de mebrana Ω con frontera $\partial\Omega$ rígida.

El problema es de los que gustan a los matemáticos, porque relaciona distintas áreas de las matemáticas: se trata de estudiar la influencia mutua de la forma (geometría y topología) de un espacio y el análisis (propiedades de las soluciones de
ciertas ecuaciones en derivadas parciales) en ese espacio. El problema de la forma del tambor es un caso concreto de la siguiente cuestión genérica: ¿hasta qué punto basta con el Análisis Matemático para detectar la forma del espacio en el que se hace ese análisis?

2. La cuerda vibrante

Vamos a comenzar con el caso más sencillo, en el que la geometría es mínima, el tambor de dimensión 1 o cuerda vibrante. Consideraremos primero una cuerda de extremos fijos y de longitud L.

Cuando se golpea la cuerda en uno de sus puntos, desplazándola de su posición inicial de equilibrio (en la que la cuerda está completamente estirada y es recta), se produce un movimiento que viene descrito por la ecuación:

$$
\frac{\partial u(x,t)}{\partial x^2}(x,t) = \frac{\partial^2 u(x,t)}{\partial t^2},
$$

ecuación de ondas,

sujeta a las condiciones de contorno:

$$
u(0,t) = 0 = u(L,t),$$

condición de Dirichlet.
En estas ecuaciones, \(u(x, t) \) representa el desplazamiento (respecto de la posición en reposo) del punto \(x \) de la cuerda en el instante \(t \).

![Diagrama de primer, segundo y tercer armónico de una cuerda](image)

Para encontrar las soluciones de estas ecuaciones se emplea el método de separación de variables: se escribe \(u(x, t) \) como un producto \(u(x, t) = v(x)e^{\text{oct}} \) y, sustituyendo en la ecuación de ondas, se ve que las soluciones de esta forma son aquellas que verifican

\[
v''(x) + \omega^2 v(x) = 0,
\]

de modo que, para encontrar la solución, hay que resolver el problema de valores propios

\[
-v''(x) = \lambda v(x) \quad (\lambda = \omega^2),
\]

con las condiciones de contorno

\[
v(0) = 0 = v(L).
\]

Los números reales \(\lambda \) que dan solución para este problema de valores propios forman una sucesión creciente de números positivos que llamaremos el \textit{espectro de la cuerda}, y lo denotaremos:

\[
\text{Spc(cuarda)} = \{ \lambda_1 = \omega_1^2, ..., \lambda_k = \omega_k^2, ... \}.
\]
8. El sonido de un tambor

Las soluciones del problema correspondientes a estos valores propios son

\[v_k(x) = \sin \omega_k x; \quad \omega_k = \frac{k\pi}{L}, \]

y la solución general es

\[u(x, t) = \sum_{k=1}^{\infty} A_k v_k(x) e^{i\omega_k t}. \]

El número \(\omega_k = \sqrt{\lambda_k} \) es la késima frecuencia (o armónico) del sonido o vibración. Se llama así porque en un tiempo \(t = 1 \) el valor \(v_k(x) \) se toma \(\frac{\omega_k}{2\pi} \) veces. También se llama armónicos de la función \(u(x, t) \) a las funciones \(v_k(x) \). Con esta definición, \(\frac{\omega_k}{2\pi} \) es el número de veces que un punto de la cuerda, que se mueve de acuerdo con el \(k \)-ésimo armónico, hace un recorrido completo.

Los coeficientes \(A_k \) indican la amplitud de cada armónico, es decir, la intensidad con que cada armónico influye en el sonido global. Dependen de la condición inicial o punto en que se golpee la cuerda.

El problema puede plantearse también para una cuerda circular cerrada (problema cerrado) de longitud \(L \). La solución es semejante, pero ahora las frecuencias de la vibración son

\[\sqrt{\lambda_k} = \omega_k = \frac{2k\pi}{L}. \]

Por lo tanto, para ambos casos (problema cerrado y problema de Dirichlet), el sonido de una cuerda determina su geometría, que no es más que su longitud \(L \).

3. El problema en una variedad

![Diagrama de un tambor cerrado y otro con frente curva]
Consideremos ahora el caso de una variedad riemanniana compacta Ω (los no familiarizados con el concepto de variedad riemanniana, pueden pensar que es como una superficie, pero de dimensión arbitraria). Si la suponemos elástica como una membrana, al golpearla no muy fuerte (pequeñas oscilaciones) se produce un movimiento que viene dado por la ecuación

$$\Delta u + \frac{\partial^2 u}{\partial t^2} = 0$$
ecuación de ondas,

con las condiciones de contorno

$$u|_{\partial \Omega} = 0 \quad \text{si} \quad \partial \Omega \neq \emptyset.$$

El operador Δ reemplaza a la segunda derivada parcial respecto a x. Su definición en \mathbb{R}^n es

$$\Delta u = - \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \frac{\partial u}{\partial x_i} = - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \text{grad}(u)^i = - \sum_{i=1}^{n} \langle D_{e_i} \text{grad}(u), e_i \rangle,$$

donde $\{e_i\}$ es la base canónica de \mathbb{R}^n y D indica la derivada direccional.

En una variedad riemanniana, el papel de la derivada direccional lo juega la derivada covariante ∇, con lo que la expresión del operador Δ es

$$\Delta u = - \sum_{i=1}^{n} \langle \nabla_{e_i} \text{grad}(u), e_i \rangle,$$

siendo $\{e_i\}$ una base ortonormal en cada punto de la variedad.

El mismo procedimiento de cálculo que para una cuerda permite deducir que la solución general es de la forma

$$u(x,t) = \sum_{k=1}^{\infty} A_k v_k(x)e^{\imath \omega_k t},$$

donde los coeficientes A_k dependen de la condición inicial (punto donde se golpee el tambor) y los coeficientes $\omega_k = \sqrt{\lambda_k}$ y las funciones v_k son las soluciones del problema de valores propios

$$\Delta v_k = \lambda_k v_k, \quad \text{con} \quad v_k|_{\partial \Omega} = 0 \quad \text{si} \quad \partial \Omega \neq \emptyset. \quad (1)$$

De nuevo, el conjunto de números reales para los que la ecuación anterior tiene solución forma una sucesión creciente, que se llama espectro de Ω,

$$Spc(\Omega) = \{\lambda_1 < \lambda_2 < \ldots < \lambda_k < \ldots\}.$$
Como hemos visto, el sonido de Ω determina el espectro, y a la inversa: si se tiene en cuenta que el espectro determina las funciones v_k, que son soluciones del problema de valores propios (1), resulta que la solución general de la ecuación de ondas $u(x, t)$ (el sonido) viene determinado por la sucesión $\{\lambda_1 < \lambda_2 < \ldots < \lambda_k < \ldots\}$, excepto por lo que se refiere a las amplitudes A_k, que dependen de la condición inicial, es decir, de donde se golpee el tambor, pero eso ya no es una propiedad del tambor, sino del músico. Por lo tanto, la pregunta de M. Kac se puede formular (como él mismo hizo) de la siguiente manera:

"¿$\text{Spec}(\Omega)$ determina Ω?"

o, dicho de otra manera,

"si $\text{Spec}(\Omega_1) = \text{Spec}(\Omega_2)$, ¿es Ω_1 isométrica a Ω_2?"

A partir de la dimensión 2, Ω tiene una geometría y una topología mucho más ricas que en dimensión 1, y es posible dar respuestas parciales a la pregunta de M. Kac: quizás el espectro no determine completamente Ω, pero puede determinar al menos parte de la geometría o topología de Ω. En esta línea van las primeras respuestas.

4. Respuestas optimistas y pesimistas

Aunque el problema del sonido del tambor se puso de moda a partir del artículo de Kac y su modo peculiar de establecerlo, la cuestión ya fue planteada por H. Weyl en 1912, quien obtuvo el siguiente resultado:

- El espectro determina el área de un dominio plano, es decir, se oye el área de Ω. Así es experiencia común de todos que un bombo tiene un sonido más grave que un tambor.

El propio Mark Kac demostró, en su mismo artículo de 1966, que:

- El espectro determina la longitud del borde de un dominio plano, es decir, se oye el perímetro de un tambor.

Una consecuencia de estos dos resultados y de la desigualdad isoperimétrica del plano es que se oye un disco, es decir, si oímos un tambor que suena igual que otro que tiene forma de disco (suponiendo que el material físico y las tensiones son las mismas), entonces podemos asegurar que ese tambor tiene la forma de un disco del mismo radio que el anterior. Es decir, si que se oye la forma de los tambores ordinarios.
Estos resultados sobre el volumen de Ω y el de $\partial \Omega$ son válidos para dimensiones y variedades arbitrarias. También es cierto en general que se oyen las esferas y los discos de una esfera o un plano.

- En 1967, McKean y Singer demostraron que también se oía el número de agujeros (que ya es una propiedad topológica) de un tambor. Es decir, que se oye si un tambor está roto.

En la figura a continuación se muestran tambores que tienen sonido distinto porque cambia su área, o su perímetro, o su número de agujeros.

Los resultados anteriores pueden considerarse dentro del grupo que C. Gordon llama respuestas optimistas al problema del tambor, pues todas se fijan en aspectos audibles de la forma del tambor.

Ya antes de que M. Kac hiciera su pregunta, J. Milnor había dado la primera respuesta pesimista, pues en 1964 mostró que

- existen tambores cerrados (cerrado significa $\partial \Omega = \emptyset$) de dimensión 16 que son
isoespectrales pero no isométricos.

Estos contrajuegos estaban lejos del problema de Kac: dimensión 16 (mucho más grande que 2), y problema cerrado (no con frontera, como era el de Kac). Así es que no parecía haber dificultades en formular la pregunta 2 años después. Pero poco a poco las respuestas pesimistas (los contrajuegos) se fueron acercando al caso planteado por Kac:

- En 1967, M. Kneser encuentra tambores cerrados de dimensión 12 isopectrales pero no isométricos.

- En 1980 M. F. Vigneras da ejemplos de tambores cerrados isoespectrales no isométricos de dimensión mayor o igual a 2.

- Y en 1982 H. Urakawa encuentra tambores isoespectrales con frontera, de dimensión mayor o igual que 4, que no son isométricos.

Pero el avance más espectacular en la línea pesimista tiene lugar en 1985, con el teorema de Sunada.

5. El teorema de Sunada

En 1985, Sunada demostró el siguiente

Teorema de Sunada ([Su]) Sea M una variedad riemanniana compacta, G un grupo de isometrias de M. Si H_1 y H_2 subgrupos de G que verifican:

- existe una biyección $\varphi : H_1 \rightarrow H_2$ tal que, para todo $h \in H_1$, $h \varphi(h)$ son conjugados en G (es decir, existe un $g \in G$ que verifica $\varphi(h) = ghg^{-1}$),

 o, equivalentemente,

- para todo $g \in G$, $\tau([g] \cap H_1) = \tau([g] \cap H_2)$, donde $[g]$ denota la clase de conjugación de g, entonces

 $$\text{Spc}(M/H_1) = \text{Spc}(M/H_2).$$

En este teorema, para $i = 1, 2$, M/H_i denota el cociente

$$M/H_i := \{H_ix; \ x \in M\} = M/\sim,$$

donde la relación de equivalencia \sim está definida por $x \sim y \Leftrightarrow \exists h \in H/ y = hx$. Además, las acciones de H_1 y H_2 sobre M han de ser tales que M/H_i sean variedades
diferenciables de la misma dimensión que M (y, por tanto, localmente difeomorfas a M).

La importancia de este teorema radica en que es una receta para construir contraejemplos. Hasta este teorema, cada contraejemplo era el efecto de una idea feliz. A partir de este teorema basta partir de una variedad compacta que admita un grupo finito de isometrías, y tomar dos subgrupos H_1 y H_2 que cumplan la condición del teorema y tales que M/H_1 y M/H_2 no sean isométricos. (Aún así, el saber aplicar esta receta es todo un arte).

Con el objeto de entender los desarrollos posteriores, es necesario entender la condición de que M/H_i sea una variedad. La condición habitual para asegurar que M/H_i es una variedad es: $\forall p \in M$, existe un entorno $U \ni p$ que verifica $hU \cap U = \emptyset$ $\forall h \in H_i$. Un ejemplo sencillo de cociente M/H_i (aunque con M no compacta y H_i no finito) es el toro

$$T^2 = \mathbb{R}^2/\mathbb{Z}^2,$$

donde \mathbb{Z}^2 es el grupo de las traslaciones del plano \mathbb{R}^2 de vectores $(m,n) \in \mathbb{Z}^2$, o bien, como en la figura, de vectores $m(x_1,y_1) + n(x_2,y_2)$.

![Diagrama de un toro con vectores](image)
6. Calor y sonido

El método usado, tanto para los resultados optimistas como para los pesimistas, se basa en la ecuación del calor: usar la difusión de calor para determinar el sonido.

La ecuación de difusión del calor en una variedad M es

$$\Delta u(x, t) + \frac{\partial u}{\partial t}(x, t) = 0, \quad (2)$$

donde $u(x, t)$ es la temperatura en el punto $x \in M$ en el instante t. Si $\partial M \neq \emptyset$, consideraremos además la condición de refrigeración en el borde $u(x, t)|_{\partial \Omega} = 0$.

La solución fundamental de la ecuación del calor, o núcleo del calor es la única función

$$K(x, y, t) : M \times M \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$$

que verifica las condiciones:

i) $$(\Delta_x + \frac{\partial}{\partial t})K(x, y, t) = 0, y$$

ii) $\lim_{t \to 0} K(x, y, t) = \delta_y(x)$, es decir $\lim_{t \to 0} \int_M K(x, y, t)f(y)dy = f(x)$.

De otro modo, $K(x, y, t)$ es la solución de la ecuación del calor que corresponde a una distribución inicial de temperatura ∞ en y y 0 en el resto.

De su definición resulta inmediato que toda solución $u(x, t)$ de (2) verificando la condición inicial $u(x, 0) = f(x)$ viene dada por

$$u(x, t) = \int_K K(x, y, t)f(y)dy.$$

Su relación con el sonido proviene de que si

$$Sp(M) = \{\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots\}, y$$

$$\Delta f_i = \lambda_i f_i, \quad \text{con} \ \{f_i\} \ \text{una base ortonormal completa},$$

entonces

$$K(x, y, t) = \sum_i e^{-\lambda_i t} f_i(x)f_i(y).$$

De esta expresión resulta que

$$\text{tr}K(t) = \int_K K(x, x, t)dx = \sum_i e^{-\lambda_i t}, y$$
\[\lambda_{k+1} = \text{mayor \ } \lambda \text{ tal que } \lim_{t \to \infty} \frac{\text{tr}K(t) - \sum_{i=1}^{k} e^{-\lambda_{i}t}}{e^{-\lambda_{i}t}} \text{ es finito,} \]
es decir
\[\text{tr}K(t) \text{ y } \text{Spc}(M) \text{ se determinan mutuamente.} \]

La utilización fundamental del núcleo del calor para determinar las propiedades geométricas audibles (es decir, para obtener resultados optimistas) ha consistido en considerar un desarrollo asintótico
\[\text{tr}K(t) \sim_{t \to 0} a_{0} + b_{0}t^{\frac{1}{2}} + a_{1}t + b_{1}t^{\frac{3}{2}} + a_{2}t^{2} + b_{2}t^{\frac{5}{2}} + ... \]
en el que \(a_{i}, b_{i} \) son invariantes métricos. El cálculo de esos invariantes permite obtener algunas propiedades geométricas determinadas por el espectro. Así, para \(M = \Omega \) un dominio de \(\mathbb{R}^{2} \),
\[a_{0} = \frac{\text{área}(\Omega)}{2\pi}, \]
\[b_{0} = \frac{\text{longitud}(\partial \Omega)}{\sqrt{32\pi}}, \]
\[a_{1} = \frac{1 - \text{número de agujeros}(\Omega)}{6}, \]
\[b_{1} = \text{cte} \int_{\partial \Omega} k(s)^{2}ds, \quad (k(s) = \text{curvatura de } \partial \Omega), \]

Los tres primeros coeficientes \(a_{0}, b_{0}, a_{1} \) dan los teoremas anteriores de H. Weyl, M. Kac y McKean y Singer para dominios del plano.

Veamos ahora a indicar cómo se usa esencialmente el núcleo del calor para obtener contracexjemplos (resultados pesimistas). Se parte de una variedad riemanniana \(M \), si \(G \) es un grupo de isometrías de \(M \) tal que \(M/G \) es una variedad de la misma dimensión que \(M \). Los núcleos del calor de \(M \) y \(M/G \) están relacionados por
\[K^{M/G}(x, y, t) = \sum_{g \in G} K^{M}(\pi(x), g\pi(y), t), \]
donde \(\pi(x) = x, \pi(y) = y \), siendo \(\pi : M \to M/G \) la proyección canónica sobre el cociente.

El contracexjemplo de Milnor se obtiene considerando el toro \(T^{n} = \mathbb{R}^{n}/\mathbb{Z}^{n} \), y, como \(K^{\mathbb{R}^{n}} \) es conocido, se calcula
\[\text{tr}K^{T^{n}}(t) = \frac{\text{volumen}(T^{n})}{(4\pi t)^{\frac{n}{2}}} \sum_{e \in \Lambda} e^{-|e|^{2}/4t}, \]
de donde resulta que “$\text{Spec}(T^n)$ y el conjunto $A = \{\text{area}(T^n), |\ell|; \ell \in \Lambda\}$ se determinan mutuamente”. Como era conocida en tiempos de Milnor la existencia, en dimensión 16, de dos retículos $\Lambda_1 \neq \Lambda_2$ con los mismos valores para el conjunto A (resultado de la teoría de números), esto daba como consecuencia la existencia de dos toros no isométricos (al estar asociados a retículos distintos) con el mismo espectro.

El teorema de Sunada se obtiene usando la fórmula para K^M/G para probar que, bajo sus hipótesis, $\text{tr}K^{M/H_1}(t) = \text{tr}K^{M/H_2}(t)$.

Sunada dedujo de su teorema que deben de existir variedades M/H_i cerradas isoespectrales no isométricas en dimensiones 2 y 4, pero no dio ejemplos concretos.

7. Ejemplos de Buser y teorema de Berard

Los ejemplos concretos los dio Buser en 1986, mostrando triples de grupos finitos (G, H_1, H_2) que verifican las hipótesis del teorema de Sunada. Me interesa ahora mostrar la imagen de un par de esos ejemplos, que corresponden a dos superficies con borde, isoespectrales y no isométricas.

![Diagrama de ejemplos de Buser y teorema de Berard](image)

Estudiando sus ejemplos, Buser encuentra una demostración más directa de la isoespectralidad (aplicada solo a sus ejemplos) usando el método de “trasplante de funciones propias”.

Este método es usado por Berard (1991) para la demostración general del teorema de Sunada: lo demuestra directamente usando trasplante de funciones propias, sin
pasar por el núcleo del calor. Este método de demotración tiene al menos dos ventajas:

1. Da también una pequeña generalización del teorema de Sunada: ya no se necesita que M/H, sea una variedad semejante a M (localmente difeomorfa a M), basta que sea algo más general, que admite singularidades, conocido con el nombre de “orbifold”. Esta pequeña mejora en las hipótesis resultó muy importante, permitió a C. Gordon, D. Webb y S. Wolpert encontrar, en 1992, los primeros ejemplos de dominios isoespectrales no isométricos en el plano (respondiendo negativamente a la pregunta de M. Kac).

2. Permite construir contraejemplos más elementales en el plano, cuya comprensión es accesible a un estudiante de licenciatura.

8. El ejemplo de Gordon, Webb y Wolpert

Los primeros ejemplos en el plano de dominios isoespectrales no isométricos, encontrados por C. Gordon, D. Webb y S. Wolpert en 1992, fueron los siguientes:

¿Cómo los encontraron?. Es fácil de adivinar si se comparan con el par de ejemplos de Buser de tambores no planos de la página anterior. Si se fija uno atentamente, cuando se “aplastan” los tambores de Buser, aparecen los de Gordon, Webb y Wolpert. Eso es exactamente lo que estos matemáticos hicieron (así se lo oí explicar a Wolpert en el otoño de 1992). Pero los ejemplos de Buser son de 1986, y estos de 1992. ¿Cómo es posible que hayan sido necesarios 6 años para aplastar
unos ejemplos?. Vamos a intentar explicarlo.

En primer lugar hay que entender cuál es el significado matemático de “aplastar”. Aplastar consiste simplemente en identificar los puntos de arriba (o de un lado) con los de abajo (o del otro lado) de una superficie de Buser B y considerar el conjunto cociente GWW resultante de hacer la identificación. Si se considera el plano sobre el que se aplastan las figuras B desplazado hasta dividir las mismas en dos partes iguales, de modo que los puntos que quedan a un lado del plano se identifican con los que quedan al otro, la superficie aplastada GWW es la que resulta como cociente de la acción del grupo G formado por la simetría respecto de ese plano y la identidad sobre la superficie inicial B. Por lo tanto, GWW se obtiene de B como cociente por la acción de un grupo de isometrías, como ocurre en el teorema de Sunada. Pero hay una dificultad para aplicar el teorema de Sunada: la acción del grupo G sobre B no cumple la propiedad “$\forall p \in M, \text{ existe un entorno } U \ni p \text{ que verifica } hU \cap U = \emptyset \forall h \in G$” que indicábamos al final del apartado 5 al hablar del teorema de Sunada. Los puntos que fallan son los que en el dibujo de las superficies GWW aparecen representados por una línea doble. Esta restricción de esa propiedad de la acción del grupo desaparece si al cociente solo le exigimos (al principio) que sea una orbifold, por ello fue necesario esperar a la generalización del teorema de Sunada por parte de Berard para encontrar los contraejemplos definitivos.

Una vez encontrados los primeros contraejemplos en el plano, ha sido fácil encontrar muchos más. Y, además, usando el trasplante de funciones de Buser y Berard, el modo de mostrar la isoespectralidad ha resultado mucho más elemental.

9. Los ejemplos, con papel y tijeras

Vamos a ver ahora esos ejemplos sencillos y cuya demostración resulta posible entender a los estudiantes de la Licenciatura de Matemáticas (si bien, para los detalles, referimos a la bibliografía elemental que damos al final, donde también encontrará el lector las referencias precisas de los artículos donde se hallan desarrollados los resultados establecidos hasta ahora).

Todos los ejemplos elementales se basan en el método del “trasplante de funciones propias”. Este método consiste en lo siguiente: dados los dos dominios B y D supuestamente isoespectrales, se considera el espectro $\{\lambda_i\}$ de B con una familia de correspondientes funciones propias $\{f_i\}$ formando una base ortonormal completa del espacio de las funciones de cuadrado integrable sobre B. Entonces se “trasplanta” cada una de las funciones f_i al dominio D, de modo que, en ese
dominio, siguen correspondiendo al valor propio λ_i. Si se logra este trasplante de modo que sea evidente como hacer el trasplante reciproco, B y D son isoespectrales.

Una **propiedad común a todos los contrac ejemplos** en el plano es que todos están hechos a partir de un dominio fundamental o “ladrillo” que se repite de modo distinto. Así, los dominios del plano isoespectrales están hechos de ladrillos todos iguales, de modo que cada dos que se cortan lo hacen a lo largo de un segmento, y uno se obtiene del otro por reflexión respecto de ese segmento.

Los **principios que se aplican para el trasplante** de una función propia en un dominio hecho de ladrillos son:

P.1. Si $A \subset \Omega$ y, en Ω, $\Delta f = \lambda f$, entonces $\Delta f|_A = \lambda f|_A$.

P.2. Si $\Delta f = \lambda f$ y $\Delta g = \lambda g$, entonces $\Delta(f \pm g) = \lambda(f \pm g)$.

P.3. Si $\tau : A \rightarrow B$ es una isometría, para cualquier función $f : B \rightarrow \mathbb{R}$, si $\Delta f = \lambda f$, entonces $\Delta(f \circ \tau) = \lambda(f \circ \tau)$.

P.4. (Principio de reflexión). Si σ es una reflexión respecto de un eje L y f es una función propia a un lado de L que se anula sobre L, entonces el pegamiento $f \vee (-f \circ \sigma)$ de las funciones f y $(-f \circ \sigma)$ es una función propia C^∞ a ambos lados de L con el mismo valor propio.

Veamos el ejemplo de P. Buser, J. Conway, P. Doyle and K.D. Semmler (1994) de las hélices de barco. Se comienza con dos hélices que son simétricas respecto de un eje vertical y, por lo tanto, isométricas. Cada una de ellas está formada por la unión de siete triángulos equiláteros iguales.
Para obtener dominios no isométricos, en cada una de las hélices anteriores se sustituye el triángulo equilátero por un triángulo escaleno. Si se observa la figura que resulta, se ve que una traslación lleva uno de los triángulos centrales en el otro. Como una isometría en el plano está determinada por la imagen de tres puntos, resulta que, de existir una isometría entre las dos hélices, debería ser esa traslación. Como, obviamente, esa traslación no lleva un dominio en el otro, resulta que las dos hélices no son isométricas.

Para ver que, en cambio, son isoespectrales, se hace el trasplante de una función propia f en la primera hélice a una función propia de la segunda hélice del siguiente modo (que no es más que aplicar los principios P.1 a P.4 indicados anteriormente): se denota (ver figura) por 0, 1, ..., 6 las restricciones de F a cada uno de los siete triángulos. Por la condición de contorno de Dirichlet, esas funciones se anulan en los ejes de la frontera de la figura, lo que es equivalente (por P.4) a que la función f debe convertirse en $-f \circ \sigma$ si se continúa como una función C^∞ al atravesar uno de los segmentos de la frontera, donde σ es la simetría respecto del eje que contiene a ese segmento. Si denotamos por $-0, -1, ..., -6$ las composiciones $-i \circ \sigma_i$, $i = 0, ..., 6$, en la figura se muestra el modo de definir, sobre la hélice de la derecha, el trasplante de f que resulta obligado (por los principios P.1 a P.4) si se elige llevar la función 1.
de la hélice de la izquierda sobre el triángulo central de la hélice de la derecha.

Los primeros ejemplos elementales fueron dados por Chapman, en 1992, aunque publicados en 1995. Todos los ejemplos de este autor son variantes de los dos tambores isoespectrales no isométricos siguientes

La demostración de su isoespectralidad es semejante a la de los tambores en forma de hélice de barco, y el correspondiente trasplante de funciones se muestra en la siguiente figura, en la que las restricciones de la función propia a cada triángulo se denotan ahora por letras, y las composiciones $-i \circ \sigma_i$ por $-\tilde{i}$, siendo i la correspondiente letra.

La demostración de la isoespectralidad también se puede hacer doblando y pegando tres ejemplares del tambor inicial para dar el segundo, del modo que se indica
en el siguiente gráfico:
Todos los ejemplos elementales vistos hasta ahora están hechos a base de un triángulo fundamental que se va repitiendo. A continuación mostramos unos ejemplos de Chapman construidos de la misma forma que el último visto, pero en los que el "ladrillo fundamental" no es un triángulo. El primero de ellos es el mismo ejemplo de Gordon Web y Wolpert:
8. El sonido de un tambor

Tampoco es necesario que el "ladrillo fundamental" sea un polígono, como muestra el siguiente ejemplo:

Ni siquiera es necesario que el tambor resultante sea conexo:
Este tambor desconexo tiene la ventaja frente a todos los anteriores de que se puede calcular con toda exactitud su espectro, y comprobar que los espectros coinciden de modo directo y no sólo como consecuencia de un teorema.

10. ¿Y después?

Después de haber sido capaces de responder a la pregunta de M. Kac, podría parecer que la investigación se ha acabado, que ya no queda nada por hacer. Sin embargo, no es así, aquí hay una lista de problemas pendientes (que son solo un ejemplo de los muchos posibles):

Problemas en el plano:

1. ¿Existen contraejemplos con borde regular?. Obsérvese que todos los que hemos visto aquí tenían esquinas.

2. ¿Existen contraejemplos convexos?.

3. ¿Qué dominios se pueden caracterizar por su espectro?. Hemos visto que los discos quedan caracterizados por su espectro, pero el problema es encontrar todos (o al menos muchos de) los dominios que tienen esa propiedad.

Problemas en una variedad arbitraria:

1. Hemos mostrado distintos pares de tambores isoespectrales no isométricos. Pero, ¿podemos encontrar más de dos?. Ya se han encontrado diversas familias uniparamétricas de tambores isoespectrales no isométricos, pero se sigue buscando más.

2. Si el número de tambores isoespectrales puede no ser ni siquiera finito (problema 1), al menos, ¿cuando podemos afirmar que la familia de tambores isoespectrales con determinadas condiciones es compacta?.

3. ¿Qué se puede oír cuando se conoce solo un trozo del espectro \(\{\lambda_1, ..., \lambda_k\}\)?

4. ¿Existen variedades isoespectrales que no sean localmente isométricas?.

Quizás alguno de estos problemas ya esté completamente resuelto. Antes de tratar de resolver uno hay que ponerse al día, porque, en estos momentos, el avance en esta cuestión es muy rápido.
11. Epílogo

¿Cómo sonaría un piano en el que las cuerdas han sido sustituidas por tambores? En un congreso de la A.M.S. en 1988, D. De Turck presentó una simulación en la que diversas piezas musicales eran interpretadas por piano de este tipo. El sonido que se escuchó fue calificado de "horrible" por C. Gordon. Quizás porque las proporciones de las distintas frecuencias del espectral de un tambor de dimensión ≥ 2 no son tan simples como las de una cuerda vibrante. ¿Es la simplicidad lo que produce la armonía?.

Bibliografía elemental

[Ca] Leon Navarro de Carvalho, ¿Podemos oir la forma de un tambor?, http://cimat.mx/.

